Skip to main content

Relearning Process for SPRT in Structural Change Detection of Time-Series Data

  • Chapter
  • First Online:
Real World Data Mining Applications

Part of the book series: Annals of Information Systems ((AOIS,volume 17))

  • 2822 Accesses

Abstract

This study proposes a relearning process for a prediction model after detecting structural change points. There are three problems with the detection of structural change points in time-series data: (1) how to generate a prediction model, (2) how to detect a structural change point rapidly, and (3) how the prediction model should relearn after detection. This article targets the third problem and proposes five relearning methods and a process that embeds the relearning process in the sequential probability ratio test. Two experiments, one using 20 generated data sets and the other TOPIX, which consists of 1104 time-series data points between 1991 and 2012, show that using past and future data after detecting the structural change points is helpful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. *: Yahoo! finance japan. http://finance.yahoo.co.jp/ (2012). Accessed 18 Aug 2014

  2. Blostein, S.: Quickest detection of a time-varying change in distribution. IEEE Trans. Inf. Theory 37(4), 1116–1122 (1991)

    Article  Google Scholar 

  3. Box, G., Jenkins, G.: Time Series Analysis. Forecasting and Control. Prentice Hall, Englewood Cliffs (1976)

    Google Scholar 

  4. Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting. Springer, New York (2003)[AQ2]

    Google Scholar 

  5. Brown, R.L., Durbin, J., Evans, J.M.: Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B (Methodol.) 37(2), 149–192 (1975)

    Google Scholar 

  6. Bruzzone, L., Fernandez Prieto, D.: A Bayesian approach to automatic change detection. Proceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium pp. 1816–1818, Hamburg, Germany (1999)

    Google Scholar 

  7. Chow, G.: Tests of equality between sets of coefficients in two linear regressions. Econometrica. 28(3), 591–605 (1960)

    Article  Google Scholar 

  8. Chu, C.S., Hornik, K., Kaun, C.M.: Mosum tests for parameter constancy. Biometrika 82, 603–617 (1995)

    Article  Google Scholar 

  9. Han, C., Willet, P., Abraham, D.: Some methods to evaluate the performance of page’s test as used to detect transient signals. IEEE Trans. Signal Process. 47(8), 2112–2127 (1999)

    Article  Google Scholar 

  10. Horvath, L.: The maximum likelihood method for testing changes in the parameters of normal observations. Ann. Stat. 21, 671–680 (1993)

    Article  Google Scholar 

  11. Hulten, G.: Mining time-changing data streams. Proceeding of the 2001 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106, San Francisco, USA (2001)

    Google Scholar 

  12. Kawano, H., Hattori, T., Nishimatsu, K.: Structural change point detection method of time series using sequential probability ratio test. IEEJ Trans. Electron. Inf. Syst. 128, 583–592 (2008)

    Google Scholar 

  13. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE Trans. Signal Process 52, 2165–2176 (2004)

    Article  Google Scholar 

  14. Nyblom, J.: Testing for the constancy of parameters over time. J. Am. Stat. Assoc. 84, 223–230 (1989)

    Article  Google Scholar 

  15. Saad, D.: On-Line Learning in Neural Networks. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  16. Shah, R., Krishnaswamy, S., Gaber, M.: Resource-aware very fast k-means for ubiquitous data stream mining. Proceedings of the 2nd International Workshop on Knowledge Discovery in Data Streams, Porto, Portugal (2005)

    Google Scholar 

  17. Takeda, K., Hattori, T., Izumi, T., Kawano, H.: Extended sprt for structural change detection of time series based on a multiple regression model. Artif. Life Robot. 15, 417–420 (2010)

    Article  Google Scholar 

  18. Wald, A.: Sequential Analysis. Wiley, New York (1947)

    Google Scholar 

  19. Zeileis, A.: A unified approach to structural change tests based on ml scores, f statistics, and ols residuals. Econom. Rev. 24, 445–466 (2005)

    Article  Google Scholar 

  20. Zeileis, A., Leisch, F., Hornik, K., Kleiber, C.: Strucchange. An R package for testing for structural change in linear regression models. http://epub.wu.ac.at/1124/. Accessed 18 Aug 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Saga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saga, R., Kaisaku, N., Tsuji, H. (2015). Relearning Process for SPRT in Structural Change Detection of Time-Series Data. In: Abou-Nasr, M., Lessmann, S., Stahlbock, R., Weiss, G. (eds) Real World Data Mining Applications. Annals of Information Systems, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-07812-0_7

Download citation

Publish with us

Policies and ethics