Skip to main content

Brain and Neck Visualization Techniques

  • Chapter
  • First Online:
Natural User Interfaces in Medical Image Analysis

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1121 Accesses

Abstract

This chapter will be devoted to image processing, analyzing and recognizing algorithms for brain perfusion computed tomography (CTP) and neck angiography images (CTA). Both of those are popular medical imaging methods that are often used beside standard computed tomography (CT) in acute stroke imaging. Imaging of the carotid arteries is important for the evaluation of patients with an ischemic stroke or a Transient Ischemic Attack (TIA). At first it will be presented the automatic method for the detection and recognition of potential lesions in brain perfusion that can be localized with the help of CTP maps. The second part of this chapter contains different approaches for enhancing and segmenting vascular structures that are visualized with three-dimensional computed tomography angiography images. That includes vessel-enhancing filtering, region growing based algorithms and deformable contour based approaches. We will discuss and evaluate the nearly automatic (it requires minimal initial configuration from the operator) framework that enables the segmentation of the single vessel lumen. We will present the results of this framework evaluation on the CTA images of the carotid artery bifurcation region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nitschke B (2007) Professional XNA Game Programming: For Xbox 360 and Windows. Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256, ISBN: 978-0-470-12677-6

    Google Scholar 

  2. Grootjans R (2009) XNA 3.0 Game Programming Recipes: A Problem-Solution Approach. ISBN-10: 143021855X

    Google Scholar 

  3. Jaegers K (2010) XNA 4.0 Game Development by Example: Beginner's Guide, Packt Publishing, ISBN-10: 1849690669

    Google Scholar 

  4. Reed A (2010) Learning XNA 4.0. O’Reilly Media. 1005 Gravenstein Highway North, Sebastopol, CA 95472

    Google Scholar 

  5. Carter C (2009) Microsoft® XNA™ game studio 3.0, 1st edn. Sams Publishing. 800 East 96th Street, Indianapolis, Indiana 46240 USA

    Google Scholar 

  6. Official website of MonoGame technology. http://www.monogame.net

  7. Official documentation of MonoGame technology https://github.com/mono/MonoGame/wiki

  8. Hefferon J (2009) Linear algebra. Virginia Commonwealth University Mathematics. http://joshua.smcvt.edu/linearalgebra/

  9. The XNA Rendering Pipeline. http://msdn.microsoft.com/en-us/library/dd0417%28v=xnagamestudio.31%2.aspx

    Google Scholar 

  10. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  11. Nelson M (1995) Optical models for direct volume rendering. J IEEE Trans Visual Comput Graph 1(2):99–108

    Google Scholar 

  12. Engel K, Hadwiger M, Kniss J, Rezk-Salama C, Weiskopf D (2006) Real-time volume graphics 1st edn. A K Peters, ISBN: 1-56881-266-3

    Google Scholar 

  13. Hachaj T, Ogiela MR (2012) Visualization of perfusion abnormalities in augmented reality with GPU-based volume rendering algorithm. Comput Graph 36(3):163–169

    Article  Google Scholar 

  14. http://graphicsrunner.blogspot.com/. Online tutorial about volume ray casting with code examples

  15. Randima F (2004) GPU gems part 6—part VI: beyond triangles. Addison Wesley Pub Co Inc., ISBN-10: 0321228324

    Google Scholar 

  16. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317

    Article  Google Scholar 

  17. Hachaj T, Ogiela MR (2011) Augmented reality approaches in intelligent health technologies and brain lesion detection. Availability, reliability and security for business, enterprise and health information systems. Lect Notes Comput Sci 6908:135–148

    Google Scholar 

  18. Krüger J, Westermann R (2003) Acceleration techniques for GPU-based volume rendering. In: Proceedings of IEEE visualization. pp 287–292

    Google Scholar 

  19. Hachaj T, Ogiela MR (2012) Segmentation and visualization of tubular structures in computed tomography angiography. Lect Notes Artif Intell 7198:495–503

    Google Scholar 

  20. Hachaj T, Ogiela MR (2012) Evaluation of carotid artery segmentation with centerline detection and active contours without edges algorithm. Lect Notes Comput Sci 7465:469–479

    Google Scholar 

  21. Ogiela MR, Hachaj T (2012) The automatic two-step vessel Lumen segmentation algorithm for carotid bifurcation analysis during perfusion examination. In: Watada J, Watanabe T, PhillipsWren G (eds) Intelligent decision technologies (IDT’2012), vol 2. Smart innovation systems and technologies, vol 16, pp 485–493

    Google Scholar 

  22. Ogiela MR, Hachaj T (2013) Automatic segmentation of the carotid artery bifurcation region with a region-growing approach. J Electron Imaging 22(3):033029. doi:10.1117/1.JEI.3.033029

  23. Hachaj T, Ogiela MR (2012) Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data. J Electron Imaging 21(4):043017. doi:10.1117/1.JEI.21.4.043017

  24. Hachaj T (2014) Real time exploration and management of large medical volumetric datasets on small mobile devices—evaluation of remote volume rendering approach. Int J Inform Manage 34:336–343. doi:10.1016/j.ijinfomgt.2013.11.005

  25. Hachaj T, Ogiela MR (2010) Augmented reality interface for visualization of volumetric medical data. Adv Intell Soft Comput 84:271–277 (Springer, Berlin, Heidelberg)

    Google Scholar 

  26. Hachaj T (2012) Pattern classification methods for analysis and visualization of brain perfusion CT maps. Comput Intell Parad Adv Pattern Classif 386:145–170

    Article  Google Scholar 

  27. Yang Y, Park DS, Huang S, Rao N (2010) Medical image fusion via an effective wavelet-based approach. EURASIP J Adv Signal Process 2010:44

    Google Scholar 

  28. Neumann L, Csébfalvi B, König A, Gröller E (2000) Gradient estimation in volume data using 4D linear regression. Comput Graph Forum 19(3):351–358

    Article  Google Scholar 

  29. Ballard DH, Brown CM (1982) Computer vision. Prentice Hall, INC. Englewood Cliffs, New Jersey 07632

    Google Scholar 

  30. Sobel I (1996) An isotropic 3 × 3 × 3 volume gradient operator. Hewlett-Packard’s Voxelator V-3 CD-ROM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek R. Ogiela .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ogiela, M.R., Hachaj, T. (2015). Brain and Neck Visualization Techniques. In: Natural User Interfaces in Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-07800-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07800-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07799-4

  • Online ISBN: 978-3-319-07800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics