Skip to main content

Computer Analysis of Brain Perfusion and Neck Angiography Images

  • Chapter
  • First Online:
Natural User Interfaces in Medical Image Analysis

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1115 Accesses

Abstract

This chapter will be devoted to image processing, analyzing and recognizing algorithms for brain perfusion computed tomography (CTP) and neck angiography images (CTA). Both of those are popular medical imaging methods that are often used beside standard computed tomography (CT) in acute stroke imaging. Imaging of the carotid arteries is important for the evaluation of patients with an ischemic stroke or a Transient Ischemic Attack (TIA). At first it will be presented the automatic method for the detection and recognition of potential lesions in brain perfusion that can be localized with the help of CTP maps. The second part of this chapter contains different approaches for enhancing and segmenting vascular structures that are visualized with three-dimensional computed tomography angiography images. That includes vessel-enhancing filtering, region growing based algorithms and deformable contour based approaches. We will discuss and evaluate the nearly automatic (it requires minimal initial configuration from the operator) framework that enables the segmentation of the single vessel lumen. We will present the results of this framework evaluation on the CTA images of the carotid artery bifurcation region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scharf J, Brockmann MA, Daffertshofer M, Diepers M, Neumaier-Probst E, Weiss C, Paschke T, Groden C (2006) Improvement of sensitivity and interrater reliability to detect acute stroke by dynamic perfusion computed tomography and computed tomography angiography. J Comput Assist Tomogr 30(1):105–110

    Article  Google Scholar 

  2. Manniesing R, Schaap M, Rozie S, Hameeteman R, Vukadinovic D, van der Lugt A, Niessen W (2010) Robust CTA lumen segmentation of the atherosclerotic carotid artery bifurcation in a large patient population. Med Image Anal 14:759–769

    Article  Google Scholar 

  3. Hachaj T, Ogiela MR (2011) CAD system for automatic analysis of CT perfusion maps. Opto-Electron Rev 19(1):95–103. doi:10.2478/s11772-010-0071-2

    Article  Google Scholar 

  4. Hachaj T, Ogiela MR (2010) Automatic detection and lesion description in cerebral blood flow and cerebral blood volume perfusion maps. J Sig Proc Syst 61(3):317–328

    Article  Google Scholar 

  5. Hachaj T, Ogiela MR (2013) Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing 122(25):33–42

    Article  Google Scholar 

  6. Wintermark M et al (2002) Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 33:2025–2031

    Article  Google Scholar 

  7. Wintermark M, Fischbein NJ, Smith WS, Ko NU, Quist M, Dillon WP (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Roentgenol 26(1):104–112

    Google Scholar 

  8. Wintermark M, Reichhart M, Thiran J-P, Maeder P, Schnyder P, Bogousslavsky J, Meuli R (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51:417–432

    Article  Google Scholar 

  9. Tietke M, Riedel C (2008) Whole brain perfusion CT imaging and CT angiography with a 64-channel CT system. MedicaMundi 52/1(07):21–23

    Google Scholar 

  10. Ho CY, Hussain S, Alam T, Ahmad I, Wu IC, O’Neill DP (2013) Accuracy of CT cerebral perfusion in predicting infarct in the emergency department: lesion characterization on CT perfusion based on commercially available software. Emerg Radiol 20(3):203–212

    Article  Google Scholar 

  11. Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6

    Article  MATH  Google Scholar 

  12. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480

    Article  Google Scholar 

  13. Lawrence RD, Almasi GS, Rushmeier HE (1999) A scalable parallel algorithm for self-organizing maps with applications to sparse data mining problems. Data Min Knowl Disc 3:171–195

    Article  Google Scholar 

  14. Lange O, Meyer-Baese A, Wismuller A, Hurdal M (2005) Analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series based on unsupervised clustering methods. In: Proceedings of SPIE 5818, independent component analyses, wavelets, unsupervised smart sensors, and neural networks III, 26 (April 05, 2005). doi:10.1117/12.601005

  15. Wismüller A, Lange O, Dersch DR, Hahn K, Leinsinger GL (2001) Analysis of dynamic perfusion MRI data by neural networks. In: ESANN’2001 Proceedings—European symposium on artificial neural networks Bruges (Belgium), pp 19–24. D-Facto public., ISBN 2-930307-01-3, 25–27 Apr 2001

    Google Scholar 

  16. Egmont-Petersena M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Pattern Recogn 35:2279–2301

    Article  Google Scholar 

  17. Matsumoto H, Masumoto R, Kuroda C (2009) Feature extraction of time-series process images in an aerated agitation vessel using self organizing map. Neurocomputing 73:60–70

    Article  Google Scholar 

  18. Markaki VE, Asvestas PA, Matsopoulos GK (2009) Application of Kohonen network for automatic point correspondence in 2D medical images. Comput Biol Med 39:630–645

    Article  Google Scholar 

  19. Wismüller A, Vietze F, Behrends J, Meyer-Baese A, Reiser M, Ritter H (2004) Fully automated biomedical image segmentation by self-organized model adaptation. Neural Netw 17:1327–1344

    Article  Google Scholar 

  20. Li Y, Chi Z (2005) MR brain image segmentation based on self-organizing map network. Int J Inf Technol 11(8):45–53. ISSN 0218-7957

    Google Scholar 

  21. Vijayakumar C, Damayanti G, Pant R, Sreedhar CM (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31(7):473–484 Epub 2007 Jun 14

    Article  Google Scholar 

  22. Eastwood JD et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222(1):227–236

    Google Scholar 

  23. Kohonen T (1995) Self-organizing maps, Springer series in information sciences, vol 30. Springer, New York

    Google Scholar 

  24. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5. http://www.cis.hut.fi/somtoolbox/

  25. Kumpulainen P, Mettänen M, Lauri M, Ihalainen H (2009) Relating halftone dot quality to paper surface topography. In: Engineering applications of neural networks, Communications in computer and information science, vol 43, pp 178–189

    Google Scholar 

  26. Srinivasan A, Goyal M, Azri FA, Lum C (2006) State-of-the-art imaging of acute stroke. Radiographics 26:75–95

    Article  Google Scholar 

  27. Allchin D (2001) Error types. Perspect Sci 9:38–59

    Article  Google Scholar 

  28. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L (2005) The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 38(5):404–415

    Article  Google Scholar 

  29. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13:819–845

    Article  Google Scholar 

  30. Bodzioch S, Ogiela MR (2009) New approach to gallbladder ultrasonic images analysis and lesions recognition. Comput Med Imaging Graph 33:154–170

    Article  Google Scholar 

  31. Ogiela MR, Bodzioch S (2011) Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions. Opto-Electron Rev 19(2):155–168

    Article  Google Scholar 

  32. Josephson SA, Bryant SO, Mak HK, Johnston SC, Dillon WP, Smith WS (2004) Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology 10;63(3):457–460

    Google Scholar 

  33. Steinman DA, Poepping TL, Tambasco M, Rankin RN, Holdsworth DW (2000) Flow patterns at the stenosed carotid bifurcation: effect of concentric versus eccentric stenosis. Ann Biomed Eng 28(4):415–423. doi:10.1114/1.279

    Article  Google Scholar 

  34. Bouraoui B, Ronse C, Baruthiob J, Passat N, Germainc P (2010) 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput Med Imaging Graph 34:377–387

    Article  Google Scholar 

  35. Itai Y, Yamamoto A, Kim H, Tan JK, Ishikawa S (2009) Automatic detection of blood vessels from CTA images employing morphological operation. Artif Life Robotics 13:428–433. doi:10.1007/s10015-008-0594-5

    Article  Google Scholar 

  36. Freiman M, Joskowicz L, Broide N, Natanzon M, Nammer E, Shilon O, Weizman L, Sosna J (2012) Carotid vasculature modeling from patient CT angiography studies for interventional procedures simulation. Int J Comput Assist Radiol Surg 7(5):799–812

    Article  Google Scholar 

  37. Dufour A, Tankyevych O, Naegel B, Talbot H, Ronse C, Baruthio J, Dokládal P, Passat N (2013) Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Med Image Anal 17:147–164

    Article  Google Scholar 

  38. Kostopoulos S, Glotsos D, Kagadis GC, Daskalakis A, Spyridonos P, Kalatzis I, Karamessini M, Petsas T, Cavouras D, Nikiforidis G (2007) A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA. Comput Graph 31:493–500

    Article  Google Scholar 

  39. Hameeteman K, Zuluaga MA, Freiman M, Joskowicz L, Cuisenaire O, Valencia LF, Gülsün MA, Krissian K, Mille J, Wong WCK, Orkisz M, Tek H, Hoyos MH, Benmansour F, Chung ACS, Rozie S, van Gils M, van den Borne L, Sosnam J, Berman P, Cohen N, Douek PC, Sánchez I, Aissat M, Schaap M, Metz CT, Krestin GP, van der Lugt A, Niessen WJ, van Walsum T (2011) Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med Image Anal 15:477–488

    Article  Google Scholar 

  40. van Velsen EFS, Niessen WJ, de Weert TT, de Monyé C, van der Lugt A, Meijering E, Stokking R (2007) Evaluation of an improved technique for lumen path definition and lumen segmentation of atherosclerotic vessels in CT angiography. Eur Radiol 17(7):1738–1745

    Article  Google Scholar 

  41. Firouzian A, Manniesing R, Flach ZH, Risselada R, van Kooten F, Sturkenboom MCJM, van der Lugt A, van Niessen WJ (2011) Intracranial aneurysm segmentation in 3D CT angiography: method and quantitative validation with and without prior noise filtering. Eur J Radiol 79:299–304

    Article  Google Scholar 

  42. Scherl H, Hornegger J, Prümmer M, Lell M (2007) Semi-automatic level-set based segmentation and stenosis quantification of the internal carotid artery in 3D CTA data sets. Med Image Anal 11:21–34

    Article  Google Scholar 

  43. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  44. Yi J, Ra JB (2003) A locally adaptive region growing algorithm for vascular segmentation. Int J Imaging Syst Technol 13(4):208–214

    Article  Google Scholar 

  45. Shang Q, Clements L, Galloway RL, Chapman WC, Dawant BM (2008) Adaptive directional region growing segmentation of the hepatic vasculature. In: Proceedings of SPIE 6914, medical imaging 2008: image processing, 69141F (March 11, 2008). doi:10.1117/12.769565

  46. Carrillo FJ, Hoyos MH, Dávila EE, Orkisz M (2007) Recursive tracking of vascular tree axes in 3D medical images. Int J Comput Assist Radiol Surg 1(6):331–339

    Article  Google Scholar 

  47. Biesdorf A, Rohr K, Feng D, von Tengg-Kobligk H, Rengier F, Böckler D, Kauczor H-U, Wörz S (2012) Segmentation and quantification of the aortic arch using joint 3D model-based segmentation and elastic image registration. Med Image Anal 16:1187–1201

    Article  Google Scholar 

  48. de Bruijne M, van Ginneken B, Viergever MA, Niessen WJ (2004) Interactive segmentation of abdominal aortic aneurysms in CTA images. Med Image Anal 8:127–138

    Article  Google Scholar 

  49. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Medical image computing and computer-assisted intervention—MICCAI ‘98, pp 130–137

    Google Scholar 

  50. Hladuvka J, König A, Gröller E (2001) Exploiting eigenvalues of the Hessian matrix for volume decimation. In: The 9th international conference in central Europe on computer graphics, visualization, and computer vision (WSCG)

    Google Scholar 

  51. Hachaj T, Ogiela MR (2012) Segmentation and visualization of tubular structures in computed tomography angiography. In: Intelligent information and database systems. Lecture notes in computer science, vol 7198/2012, pp 495–503. doi:10.1007/978-3-642-28493-9_52

  52. LAPACK—Linear Algebra PACKage. http://www.netlib.org/lapack/

  53. Hachaj T, Ogiela MR (2012) Visualization of perfusion abnormalities with GPU-based volume rendering. Comput Graph UK 36(3):163–169. doi:10.1016/j.cag.2012.01.002

    Article  Google Scholar 

  54. Hachaj T, Ogiela MR (2012) Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data. J Electron Imaging 21(4), Article Number: 043017, doi:10.1117/1.JEI.21.4.043017

  55. Hachaj T, Ogiela MR (2010) Augmented reality interface for visualization of volumetric medical data. Adv Int Soft Comput 84:271–277

    Google Scholar 

  56. Ogiela MR, Hachaj T (2013) Automatic segmentation of the carotid artery bifurcation region with a region-growing approach. J Electron Imaging 22(3):033029

    Google Scholar 

  57. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  58. Hea L, Pengb Z, Everdingb B, Wangb X, Hanb CY, Weissc KL, Weeb WG (2008) A comparative study of deformable contour methods on medical image segmentation. Image Vis Comput 26(2):141–163

    Article  Google Scholar 

  59. Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), Los Alamitos, Computer Society Press, pp. 66–71

    Google Scholar 

  60. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MATH  MathSciNet  Google Scholar 

  61. Chan T, Vese L (1999) An active contour model without edges, scale-space theories in computer vision. Lect Notes Comput Sci 1682:141–151

    Article  Google Scholar 

  62. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  63. Chan TF, Vese LA (2002) A Multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  64. Ogiela MR, Hachaj T (2012) The automatic two–step vessel Lumen segmentation algorithm for carotid bifurcation analysis during perfusion examination. In: Intelligent decision technologies, smart innovation, systems and technologies, vol 16, Part 2, pp 485–493. doi:10.1007/978-3-642-29920-9_50

  65. Hachaj T, Ogiela MR (2014) The application of centerline detection and deformable contours algorithms to segmenting the carotid lumen. J Electron Imaging 23(2):023006. doi:10.1117/1.JEI.23.2.023006

  66. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  67. Zhao HK, Chan T, Merriman B, Osher S (1996) Multiphase motion. J Comput Phys 127:179–195

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek R. Ogiela .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ogiela, M.R., Hachaj, T. (2015). Computer Analysis of Brain Perfusion and Neck Angiography Images. In: Natural User Interfaces in Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-07800-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07800-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07799-4

  • Online ISBN: 978-3-319-07800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics