Skip to main content

Beyond Standard Metrics – On the Selection and Combination of Distance Metrics for an Improved Classification of Hyperspectral Data

  • Conference paper
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

Abstract

Training and application of prototype based learning approaches such as Learning Vector Quantization, Radial Basis Function networks, and Supervised Neural Gas require the use of distance metrics to measure the similarities between feature vectors as well as class prototypes. While the Euclidean distance is used in many cases, the highly correlated features within the hyperspectral representation and the high dimensionality itself favor the use of more sophisticated distance metrics. In this paper we first investigate the role of different metrics for successful classification of hyperspectral data sets from real-world classification tasks. Second, it is shown that considerable performance gains can be achieved by a classification system that combines a number of prototype based models trained on differently parametrized divergence measures. Data sets are tested using a number of different combination strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Al-Ani, A., Deriche, M.: A new technique for combining multiple classifiers using the dempster-shafer theory of evidence. Journal of Artificial Intelligence Research 17, 333–361 (2002)

    Article  MathSciNet  Google Scholar 

  3. Backhaus, A., Bollenbeck, F., Seiffert, U.: Robust classification of the nutrition state in crop plants by hyperspectral imaging and artificial neural networks. In: Proc. 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Lisboa, Portugal (2011)

    Google Scholar 

  4. Bishop, C.M., Svensén, M.: Hierarchical Mixtures of Experts. In: 19th Conference on Uncertainty in Artificial Intelligence (2003)

    Google Scholar 

  5. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  Google Scholar 

  6. Chen, X., Li, Y., Harrison, R., Zhang, Y.-Q.: Type-2 fuzzy logic-based classifier fusion for support vector machines. Applied Soft Computing 8(3), 1222–1231 (2008)

    Article  Google Scholar 

  7. Didaci, L., Fumera, G., Roli, F.: Diversity in Classifier Ensembles: Fertile Concept or Dead End? In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 37–48. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Duin, R.P.W.: The combining classifier: to train or not to train. In: ICPR (2002)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23–37 (1995)

    Google Scholar 

  10. Geweniger, T., Kästner, M., Villmann, T.: Optimization of parametrized divergences in fuzzy c-means. In: ESANN (2011)

    Google Scholar 

  11. Hammer, B., Strickert, M., Villmann, T.: Supervised Neural Gas with general similarity measure. Neural Processing Letters 21, 21–44 (2005)

    Article  Google Scholar 

  12. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15, 1059–1068 (2002)

    Article  Google Scholar 

  13. Jordan, M.I., Jacobs, R.A.: Hierarchical Mixtures of experts and the EM-algorithm. Neural Computation 6(2), 181–214 (1994)

    Article  Google Scholar 

  14. Kang, S., Park, S.: A fusion neural network classifier for image classification. Pattern Recogn. Lett. 30(9), 789–793 (2009)

    Article  Google Scholar 

  15. Kästner, M., Backhaus, A., Geweniger, T., Haase, S., Seiffert, U., Villmann, T.: Relevance learning in unsupervised vector quantization based on divergences. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 90–100. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Khreich, W., Granger, E., Miri, A., Sabourin, R.: Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs. Pattern Recognition 43(8), 2732–2752 (2010)

    Article  Google Scholar 

  17. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  18. Knauer, U., Seiffert, U.: A Comparison of Late Fusion Methods for Object Detection. In: IEEE International Conference on Image Processing, pp. 1–8 (2013)

    Google Scholar 

  19. Knauer, U., Seiffert, U.: Cascaded Reduction and Growing of Result Sets for Combining Object Detectors. In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 121–133. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Mendenhall, M.J., Merényi, E.: Relevance-based feature extraction for hyperspectral images. IEEE Transactions on Neural Networks 19(4), 658–672 (2008)

    Article  Google Scholar 

  21. Moody, J., Darken, C.J.: Fast learning in networks of locally tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  22. Mwebaze, E., Schneider, P., Schleif, F.-M., Haase, S., Villmann, T., Biehl, M.: Divergence based Learning Vector Quantization. In: Verleysen, M. (ed.) 18th European Symposium on Artificial Neural Networks (ESANN 2010), pp. 247–252. d-side publishing (2010)

    Google Scholar 

  23. Peltonen, J., Klami, A., Kaski, S.: Learning more accurate metrics for self-organizing maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 999–1004. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Płoński, P., Zaremba, K.: Improving performance of self-organising maps with distance metric learning method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 169–177. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Schneider, P., Schleif, F.-M., Villmann, T., Biehl, M.: Generalized matrix learning vector quantizer for the analysis of spectral data. In: ESANN, pp. 451–456 (2008)

    Google Scholar 

  26. Villmann, T., Haase, S.: Divergence based vector quantization of spectral data. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4 (2010)

    Google Scholar 

  27. Villmann, T., Haase, S.: Divergence-based vector quantization. Neural Comput. 23(5), 1343–1392 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Knauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Knauer, U., Backhaus, A., Seiffert, U. (2014). Beyond Standard Metrics – On the Selection and Combination of Distance Metrics for an Improved Classification of Hyperspectral Data. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics