Skip to main content

Remediation of Radionuclide-Contaminated Sites Using Plant Litter Decomposition

  • Chapter
  • First Online:
Radionuclide Contamination and Remediation Through Plants

Abstract

Radionuclide contamination of ecosystems is a commonly known problem for many sites. A frequently used option in dealing with such contamination is phytoremediation. But when thinking of phytoextraction measures, the process of radionuclide enrichment in plant material is not terminated at the end of the growing season, but may increase during decomposition of the litter afterwards. We show that the process of litter decomposition may be mostly important in remediation of radionuclide-contaminated sites for both aquatic and terrestrial ecosystems. Radionuclide concentrations within organic soil/sediment layers increase strongly during decomposition in terrestrial ecosystems as well as in aquatic systems of temperate zones although there are large differences. This is attributed to emerging fixation sites where differences in aquatic and terrestrial systems are dependent on the particular chemistry (e.g. redox chemistry) of the radionuclides. The potentially high accumulation in developing layers of organic matter on the soils/sediments of aquatic/terrestrial ecosystem can easily be removed from the contaminated sites by removing the organic matter. In summary, beside autochthonous processes (e.g. phytoremediation), especially allochthonous processes (e.g. litter decomposition) are very important for the remediation of radionuclide-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agapkina GI, Tikhomirov FA, Shcheglov AI, Kracke W, Bunzl K (1995) Association of Chernobyl-derived Pu-239+240, Am-241, Sr-90 and Cs-137 with organic matter in the soil solution. J Environ Radioact 29:257–269

    Article  CAS  Google Scholar 

  • Ahearn GA, Duerr JM, Zhuang Z, Brown RJ, Aslamkhan A, Killebrew DA (1999) Ion transport processes of crustacean epithelial cells. Physiol Biochem Zool 72:1–18

    Article  CAS  PubMed  Google Scholar 

  • Alves LC, Borgmann U, Dixon DG (2009) Kinetics of uranium uptake in soft water and the effect of body size, bioaccumulation and toxicity to Hyalella azteca. Environ Pollut 157:2239–2247

    Article  CAS  PubMed  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  PubMed  Google Scholar 

  • Baalousha M, Kammer FVD, Motelica-Heino M, Baborowski M, Hofmeister C, Le Coustumer P (2006) Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids–trace element interaction. Environ Sci Technol 40:2156–2162

    Article  CAS  PubMed  Google Scholar 

  • Barka S, Pavillon JF, Amiard JC (2001) Influence of different essential and non-essential metals on MTLP levels in the Copepod Tigriopus brevicornis. Comp Biochem Physiol C: Toxicol Pharmacol 128:479–493

    Article  CAS  Google Scholar 

  • Barka S, Pavilion JF, Amiard-Triquet C (2010) Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web. Environ Toxicol 25:350–360

    Article  CAS  PubMed  Google Scholar 

  • Barth A, Jurk M, Weiss D (1998) Concentration and distribution patterns of naturally occurring radionuclides in sediments and flood plain soils of the catchment area of the river Elbe. Water Sci Technol 37:257–262

    Article  CAS  Google Scholar 

  • Bastow J (2012) Succession, resource processing, and diversity in detrital food webs. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, New York

    Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter. Springer, Berlin

    Book  Google Scholar 

  • Berg B, Ekbohm G, Soderstrom B, Staaf H (1991) Reduction of decomposition rates of scots pine needle litter due to heavy-metal pollution. Water Air Soil Pollut 59:165–177

    Article  CAS  Google Scholar 

  • Borgmann U, Couillard Y, Doyle P, Dixon DG (2005) Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environ Toxicol Chem 24:641–652

    Article  CAS  PubMed  Google Scholar 

  • Breitburg DL, Sanders JG, Gilmour CC, Hatfield CA, Osman RW, Riedel GF, Seitzinger SP, Sellner KG (1999) Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web. Limnol Oceanogr 44:837–863

    Article  CAS  Google Scholar 

  • Bunzl K, Trautmannsheimer M (1999) Transfer of U-238, Ra-226 and Pb-210 from slag-contaminated soils to vegetables under field conditions. Sci Total Environ 231:91–99

    Article  CAS  Google Scholar 

  • Bunzl K, Kracke W, Schimmack W (1992) Vertical migration of Pu-239+Pu-240, Am-241 and Cs 137 fallout in a forest soil under spruce. Analyst 117:469–474

    Article  CAS  PubMed  Google Scholar 

  • Bunzl K, Forster H, Kracke W, Schimmack W (1994) Residence time of fallout Pu-239+240, Pu-238, Am-241 and Cs-137 in the upper horizons of an undisturbed grassland soil. J Environ Radioact 22:11–27

    Article  Google Scholar 

  • Bunzl K, Kracke W, Agapkina GI, Tikhomirov A, Shcheglov AI (1998) Association of Chernobyl derived Pu-239+240, Am-241, Sr-90 and Cs-137 with different molecular size fractions of organic matter in the soil solution of two grassland soils. Radiat Environ Biophys 37:195–200

    Article  CAS  PubMed  Google Scholar 

  • Cain DJ, Luoma SN, Wallace WG (2004) Linking metal bioaccumulation of aquatic insects to their distribution patterns in a mining-impacted river. Environ Toxicol Chem 23:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Cannon HL (1960) Botanical prospecting for ore deposits. Science 132:591–598

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain PM, McNamara NP, Chaplow J, Stott AW, Black HIJ (2006) Translocation of surface litter carbon into soil by Collembola. Soil Biol Biochem 38:2655–2664

    Article  CAS  Google Scholar 

  • Chavez-Crooker P, Garrido N, Pozo P, Ahearn GA (2003) Copper transport by lobster (Homarus americanus) hepatopancreatic lysosomes. Comp Biochem Physiol C: Toxicol Pharmacol 135:107–118

    Google Scholar 

  • Chinni S, Anderson CR, Ulrich KU, Giammar DE, Tebo BM (2008) Indirect UO2 oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations. Environ Sci Technol 42:8709–8714

    Article  CAS  PubMed  Google Scholar 

  • Choppin GR (1988) Humics and radionuclide migration. Radiochim Acta 44–45:23–28

    Google Scholar 

  • Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy metals structure benthic communities in Colorado mountain streams. Ecol Appl 10:626–638

    Article  Google Scholar 

  • Copplestone D, Johnson MS, Jones SR, Toal ME, Jackson D (1999) Radionuclide behaviour and transport in a coniferous woodland ecosystem: vegetation, invertebrates and wood mice, Apodemus sylvaticus. Sci Total Environ 239:95–109

    Article  CAS  PubMed  Google Scholar 

  • Copplestone D, Johnson MS, Jones SR (2000) Radionuclide behaviour and transport in a coniferous woodland ecosystem: the distribution of radionuclides in soil and leaf litter. Water Air Soil Pollut 122:389–404

    Article  CAS  Google Scholar 

  • Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity–litter decomposition relationships. Ecol Lett 8:1129–1137

    Article  PubMed  Google Scholar 

  • Dang CK, Gessner MO, Chauvet E (2007) Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia 99:24–32

    Article  PubMed  Google Scholar 

  • Dangles O, Gessner MO, Guerold F, Chauvet E (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    Article  CAS  Google Scholar 

  • De Schamphelaere KAC, Canli M, Van Lierde V, Forrez I, Vanhaecke F, Janssen CR (2004) Reproductive toxicity of dietary zinc to Daphnia magna. Aquat Toxicol 70:233–244

    Article  PubMed  Google Scholar 

  • D’Souza SF, Sar P, Kazy SK, Kubal BS (2006) Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:487–500

    Article  PubMed  Google Scholar 

  • Duarte S, Pascoal C, Alves A, Correia A, Cassio F (2008) Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Fresh Wat Biol 53:91–101

    CAS  Google Scholar 

  • Entry JA, Watrud LS, Reeves M (1999) Accumulation of Cs-137 and Sr-90 from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104:449–457

    Article  CAS  Google Scholar 

  • Ferreira V, Goncalves AL, Pratas J, Canhoto C (2010) Contamination by uranium mine drainages affects fungal growth and interactions between fungal species and strains. Mycologia 102:1004–1011

    Article  PubMed  Google Scholar 

  • Fesenko SV, Soukhova NV, Sanzharova NI, Avila R, Spiridonov SI, Klein D, Badot PM (2001) Cs-137 availability for soil to understory transfer in different types of forest ecosystems. Sci Total Environ 269:87–103

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Schmitt J, Marshall KC (1996) Sorption properties of biofilms. In: Calmano W, Förstner U (eds) Sediments and toxic substances. Springer, Berlin

    Google Scholar 

  • Franke K, Rossler D, Gottschalch U, Kupsch H (2000) Mobilization and retardation of uranium DOC species at three mine piles in Schlema/Alberoda, Saxony, Germany. Isotopes Environ Health Stud 36:223–239

    Article  CAS  PubMed  Google Scholar 

  • Franken RJM, Gardeniers JJP, Peeters E (2007) Secondary production of Gammarus pulex Linnaeus in small temperate streams that differ in riparian canopy cover. Fundam Appl Limnol 168:211–219

    Article  Google Scholar 

  • Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L, Bohlen PJ, Reich P (2006) Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol Invasion 8:1235–1245

    Article  Google Scholar 

  • Fuma S, Ban-nai T, Doi M, Fujimori A, Ishii N, Ishikawa Y, Kawaguchi I, Kubota Y, Maruyama K, Miyamoto K, Nakamori T, Takeda H, Watanabe Y, Yanagisawa K, Yasuda T, Yoshida S (2011) Environmental protection: researches in National Institute of Radiological Science. Radiat Prot Dosimetry 146:295–298

    Article  CAS  PubMed  Google Scholar 

  • Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75:1807–1817

    Article  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Goncalves AL, Lirio AV, Pratas J, Canhoto C (2011) Uranium contaminated water does not affect microbial activity but decreases feeding by the shredder Sericostoma vittatum. Fundam Appl Limnol 179:17–25

    Article  CAS  Google Scholar 

  • Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393

    Article  Google Scholar 

  • Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Fresh Wat Biol 46:947–957

    Article  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  • Huang YB, Wang WH, Peng A (2000) Accumulation of Cu(II) and Pb(II) by biofilms grown on particulate in aquatic systems. J Environ Sci Health A Tox Hazard Subst Environ Eng 35:575–592

    Article  Google Scholar 

  • Jakubick AT, Kahnt R (2002) Remediation oriented use of conceptual site models at WISMUT GmbH: rehabilitation of the Trünzig tailings management area. In: Merkel B, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Berlin

    Google Scholar 

  • Kaonga CC, Kumwenda J, Mapoma HT (2010) Accumulation of lead, cadmium, manganese, copper and zinc by sludge worms; Tubifex tubifex in sewage sludge. Int J Environ Sci Technol 7:119–126

    Article  CAS  Google Scholar 

  • Kominkova D, Kuehn KA, Busing N, Steiner D, Gessner MO (2000) Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol 22:271–282

    Article  Google Scholar 

  • Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227

    Article  PubMed  Google Scholar 

  • Lenhart JJ, Figueroa LA, Honeyman BD, Kaneko D (1997) Modeling the adsorption of U(VI) onto animal chitin using coupled mass transfer and surface complexation. Colloids Surf A Physicochem Eng Asp 120:243–254

    Article  CAS  Google Scholar 

  • Lightner DV, Redman RM, Hasson KW, Pantoja CR (1995) Taurs syndrome in Penaeus vannamei (Crustacea: Decapoda)—gross signs, histopathology and ultrastrucure. Dis Aquat Org 21:53–59

    Article  Google Scholar 

  • Medeiros AO, Rocha P, Rosa CA, Graca MAS (2008) Litter breakdown in a stream affected by drainage from a gold mine. Fundam Appl Limnol 172:59–70

    Article  CAS  Google Scholar 

  • Meinrath G, Volke P, Helling C, Dudel EG, Merkel BJ (1999) Determination and interpretation of environmental water samples contaminated by uranium mining activities. Fresenium J Anal Chem 364:191–202

    Article  CAS  Google Scholar 

  • Nakamori T, Yoshida S, Kubota Y, Ban-nai T, Kaneko N, Hasegawa M, Itoh R (2008) Effects of acute gamma irradiation on Folsomia candida (Collembola) in a standard test. Ecotoxicol Environ Saf 71:590–596

    Article  CAS  PubMed  Google Scholar 

  • Nassiri Y, Rainbow PS, Amiard-Triquet C, Rainglet F, Smith BD (2000) Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea: Amphipoda). Mar Biol 136:477–484

    Article  CAS  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbiol Ecol 31:225–247

    Article  Google Scholar 

  • Peplow D, Edmonds R (2005) The effects of mine waste contamination at multiple levels of biological organization. Ecol Eng 24:101–119

    Article  Google Scholar 

  • Pirog TP (1997) Role of Acinetobacter sp. exopolysaccharides in protection against heavy metal ions. Microbiology 66:284–288

    CAS  Google Scholar 

  • Purchase D, Scholes LNL, Revitt DM, Shutes RBE (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Rafferty B, Brennan M, Dawson D, Dowding D (2000) Mechanisms of Cs-137 migration in coniferous forest soils. J Environ Radioact 48:131–143

    Article  CAS  Google Scholar 

  • Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf S 44(2):169–175

    Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  PubMed  Google Scholar 

  • Robertson EL, Liber K (2007) Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations. Environ Toxicol Chem 26:2345–2355

    Article  CAS  PubMed  Google Scholar 

  • Sachs S, Brendler V, Geipel G (2007) Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy. Radiochim Acta 95:103–110

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sauras T, Roca MC, Tent J, Llaurado M, Vidal M, Rauret G, Vallejo VR (1994) Migration study of radionuclides in a Mediterranean forest soil using synthetic aerosols. Sci Total Environ 157:231–238

    Article  CAS  Google Scholar 

  • Schaller J (2013) Metal/metalloid fixation by litter during decomposition affected by silicon availability during plant growth. Chemosphere 90:2534–2538

    Article  CAS  Google Scholar 

  • Schaller J (2014) Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? Chemosphere. doi:10.1016/j.chemosphere.2013.12.086

  • Schaller J, Machill S (2012) Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments. Environ Sci Pollut Res 19:3942–3949

    Article  CAS  Google Scholar 

  • Schaller J, Struyf E (2013) Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709:201–212

    Article  CAS  Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2008) Enrichment of uranium in particulate matter during litter decomposition affected by Gammarus pulex L. Environ Sci Technol 42:8721–8726

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Brackhage C, Dudel EG (2009) Limited transfer of uranium to higher trophic levels by Gammarus pulex L. in contaminated environments. J Environ Monit 11:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Mkandawire M, Dudel EG (2010a) Heavy metals and arsenic fixation into freshwater organic matter under Gammarus pulex L. influence. Environ Pollut 158:2454–2458

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2010b) Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79:169–173

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Brackhage C, Dudel E (2011a) Invertebrates minimize accumulation of metals and metalloids in contaminated environments. Water Air Soil Pollut 218:227–233

    Article  CAS  Google Scholar 

  • Schaller J, Brackhage C, Mkandawire M, Dudel G (2011b) Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Sci Total Environ 409:4891–4898

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Dharamshi J, Dudel EG (2011c) Enhanced metal and metalloid concentrations in the gut system comparing to remaining tissues of Gammarus pulex L. Chemosphere 83:627–631

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Brackhage C, Bäucker E, Dudel E (2013a) UV-screening of grasses by plant silica layer? J Biosci 38:413–416

    Article  PubMed  Google Scholar 

  • Schaller J, Vymazal J, Brackhage C (2013b) Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: a review. Ecol Eng 53:106–114

    Article  Google Scholar 

  • Schindler DW (1990) Experimental perturbations of whole lakes as tests of hypothesis concerning ecosystem structure and function. Oikos 57:25–41

    Article  Google Scholar 

  • Schumacher M, Christl I, Vogt RD, Barmettler K, Jacobsen C, Kretzschmar R (2006) Chemical composition of aquatic dissolved organic matter in five boreal forest catchments sampled in spring and fall seasons. Biogeochemistry 80:263–275

    Article  CAS  Google Scholar 

  • Sheppard SC, Stephenson GL (2012) Ecotoxicity of aged uranium in soil using plant, earthworm and microarthropod toxicity tests. Bull Environ Contam Toxicol 88:43–47

    Article  CAS  PubMed  Google Scholar 

  • Sola C, Prat N (2006) Monitoring metal and metalloid bioaccumulation in Hydropsyche (Trichoptera, Hydropsychidae) to evaluate metal pollution in a mining river: whole body versus tissue content. Sci Total Environ 359:221–231

    Article  CAS  PubMed  Google Scholar 

  • Sridhar KR, Krauss G, Bärlocher F, Raviraja NS, Wennrich R, Baumbach R, Krauss GJ (2001) Decomposition of alder leaves in two heavy metal polluted streams in central Germany. Aquat Microb Ecol 26:73–80

    Article  Google Scholar 

  • Sterling KM, Mandal PK, Roggenbeck BA, Ahearn SE, Gerencser GA, Ahearn GA (2007) Heavy metal detoxification in crustacean epithelial lysosomes: role of anions in the compartmentalization process. J Exp Biol 210:3484–3493

    Article  CAS  PubMed  Google Scholar 

  • Suberkropp K, Chauvet E (1995) Regulation of leaf breakdown by fungi in streams—influences of water chemistry. Ecology 76:1433–1445

    Article  Google Scholar 

  • Tessier L, Vaillancourt G, Pazdernik L (1994) Comparative-study of the cadmium and mercury kinetics between the short-lived gastropod Viviparus geogianus (Lea) and palecypod Elliptio complanata (Lightfoot), under laboratory conditions. Environ Pollut 85:271–282

    Article  CAS  PubMed  Google Scholar 

  • Thabayneh KM, Jazzar MM (2013) Radioactivity levels in plant samples in Tulkarem district, Palestine and its impact on human health. Radiat Prot Dosimetry 153:467–474

    Article  CAS  PubMed  Google Scholar 

  • Tikhomirov FA, Shcheglov AI (1994) Main investigation results on the forest radioecology in the Kyshtym and Chernobyl accident zones. Sci Total Environ 157:45–57

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Vaca F, Manjon G, Garcia-Leon M (2001) The presence of some artificial and natural radionuclides in a Eucalyptus forest in the south of Spain. J Environ Radioact 56:309–325

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen HP, Buffle J (2009) Chemodynamics of aquatic metal complexes: from small ligands to colloids. Environ Sci Technol 43:7175–7183

    Article  PubMed  Google Scholar 

  • Virchenko YP, Agapkina GI (1993) Organic radionuclide compounds in soils surrounding the Chernobyl nuclear-power-plant. Eurasian Soil Sci 25:51–59

    Google Scholar 

  • Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197

    Article  CAS  Google Scholar 

  • Wang XL, Zauke GP (2004) Size-dependent bioaccumulation of metals in the amphipod Gammarus zaddachi (Sexton 1912) from the river Hunte (Germany) and its relationship to the permeable body surface area. Hydrobiologia 515:11–28

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schaller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaller, J., Nassour, M., Brackhage, C. (2014). Remediation of Radionuclide-Contaminated Sites Using Plant Litter Decomposition. In: Gupta, D., Walther, C. (eds) Radionuclide Contamination and Remediation Through Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07665-2_8

Download citation

Publish with us

Policies and ethics