Skip to main content

Natural Plant Selection for Radioactive Waste Remediation

  • Chapter
  • First Online:
Radionuclide Contamination and Remediation Through Plants

Abstract

Phytoremediation of radioactive waste is a process that uses plants to remove, transfer, or immobilize radionuclides from the contaminated soil, sediment, sludge, or water, and it is a useful method for treating large-scale low-level radionuclide contamination. However, there have not been established criteria which can be utilized to screen out suitable plant species that are capable of remediating the radioactive waste. In this chapter, important factors influencing the selection of natural plant to remediate radioactive waste, including the characteristics of radioactive waste, the vegetation plant species and vegetation community composition in the radioactive waste deposited area, the concentration of a target radionuclide in the plant, the biomass of the plant, and the concentration of a target radionuclide in the radioactive, are analyzed, and the criteria based on the phytoremediation factor (PF) have been proposed for the selection of natural plant to remediate radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdEl-Sabour MF (2007) Remediation and bioremediation of uranium contaminated soils. Electron J Environ Agric Food Chem 6:2009–2023

    CAS  Google Scholar 

  • Angassa A, Oba G (2010) Effects of grazing pressure, age of enclosures and seasonality on bush cover dynamics and vegetation composition in southern Ethiopia. J Arid Environ 74:111–120

    Article  Google Scholar 

  • Baeza A, Guillén J (2006) Influence of the soil bioavailability of radio nuclides on the transfer of uranium and thorium to mushrooms. Appl Radiat Isot 64:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Blanco Rodríguez P, Vera Tomé F, Lozano JC, Pérez Fernández MA (2010) Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area. Appl Radiat Isot 68:1154–1159

    Article  PubMed  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of elements. Academic Press, New York

    Google Scholar 

  • Carini F (1999) Radionuclides in plants bearing fruit: an overview. J Environ Radioact 46:77–97

    Article  CAS  Google Scholar 

  • Černe M, Smodiš B, Štrok M (2011) Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Žirovski vrh. Nucl Eng Des 241:1282–1286

    Article  Google Scholar 

  • Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82:223–236

    Article  CAS  PubMed  Google Scholar 

  • Cukrov N, Mlakar M, Cuculić V, Barišić D (2009) Origin and transport of 238U and 226Ra in riverine, estuarine and marine sediments of the Krka River, Croatia. J Environ Radioact 100:497–504

    Article  CAS  PubMed  Google Scholar 

  • Ding DX, Li GY, Hu N, Liu YL, Wang YD, Liu Y, Ma SW, Chen X (2010) Study on phyto-mining of uranium from uranium mill sand. Min Metall Eng 30:58–60 (In Chinese)

    Google Scholar 

  • Ding DX, Li GY, Hu N, Liu YL, Wu YQ, Wang YD, Xie HY, Yin J, Hu JS, Liu, Y, Ma SW (2011) A phytoremediation method of using plant to remediate uranium mill tailing. Patent China ZL 2009 1 0044229.4 (In Chinese)

    Google Scholar 

  • Ding DX, Li GY, Hu N, Liu YL, Wu YQ, Wang YD, Xie HY, Hu JS, Liu Y, Ma SW (2012a) A phytoremediation method of using floating plant to remediate uranium contaminated water. Patent China ZL200910044181.7 (In Chinese)

    Google Scholar 

  • Ding DX, Li GY, Hu N, Wang YD, Li HT, Yin J, Ma SW (2012b) A phytoremediation method of using plant to remove 226Ra from the uranium mill tailing and contaminated soil. Patent China ZL 200910044181.7 (In Chinese)

    Google Scholar 

  • Dragović S, Mihailović N, Gajić B (2010) Quantification of transfer of 238U, 226Ra, 232Th, 40K and 137Cs in mosses of a semi-natural ecosystem. J Environ Radioact 101:159–164

    Article  PubMed  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Fan Q, Luo XY, Fan SJ, Yi JP, Ding ZM, Zhong LJ, Wang AY, Feng RQ (2010) Numerical simulation research on the meteorological fields in a spring acid rain event over Hengshan region. Chin Environ Sci 30:879–887 (In Chinese)

    CAS  Google Scholar 

  • Federal Remediation Technologies Roundtable (2002) Remediation Technologies Screening Matrix and Reference Guide, Version 4.0: Phytoremediation. http://www.frtr.gov/matrix2/section4/4-3.html

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 31:207–214

    Article  Google Scholar 

  • Fernandes HM, Simoes Filho FFL, Perez V, Franklin MR, Gomiero LA (2006) Radioecological characterization of a uranium mining site located in a semi-arid region in Brazil. J Environ Radioact 88:140–157

    Article  CAS  PubMed  Google Scholar 

  • Florijn PJ, DE Knecht JA, Van Beusichem ML (1993) Phytochelatin concentrations and binding state of Cd in roots of maize genotypes in shoot/root Cd partitioning. J Plant Physiol 142: 537–542

    Google Scholar 

  • Hu N, Ding DX, Li GY, Wang YD, Li L, Zheng JF (2012) Uranium removal from water by five aquatic plants. Acta Sci Circumst 32:1637–1645 (In Chinese)

    CAS  Google Scholar 

  • Hu N, Zheng JF, Ding DX, Li GY, Chen X, Yu J, Yin J (2013) Screening of native hyperaccumulators at the Huayuan River contaminated by heavy metals. Bioremed J 17:21–29

    Article  CAS  Google Scholar 

  • Hu N, Ding DX, Li GY, Zheng JF, Li L, Zhao WC, Wang YD (2014) Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J Environ Radioact 129:100–106

    Article  CAS  PubMed  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  • Jiang QQ, Singh BR (1994) Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water Air Soil Pollut 74:321–343

    CAS  Google Scholar 

  • Karunakara N, Somashekarappa HM, Narayana Y, Avadhani DN, Mahesh HM, Siddappa K (2003) 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga, India. J Environ Radioact 65:255–266

    Article  CAS  PubMed  Google Scholar 

  • Khatir Sam A (1995) Radium-226 uptake by vegetation grown in Western Sudan. J Environ Radioact 29:27–38

    Article  Google Scholar 

  • Lauria DC, Ribeiro FCA, Conti CC, Loureiro FA (2009) Radium and uranium levels in vegetables grown using different farming management systems. J Environ Radioact 100:176–183

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zheng CJ (1989) The Handbook of the environmental background value. China Environmental Science Press, Beijing. (In Chinese)

    Google Scholar 

  • Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Cont Toxicol 86:646–652

    Article  CAS  Google Scholar 

  • Madruga MJ, Brogueira A, Alberto G, Cardoso F (2001) 226Ra bioavailability to plants at the Urgeirica uranium mill tailings site. J Environ Radioact 54:75–188

    Article  Google Scholar 

  • Nie XQ, Ding DX, Li GY, Gao B, Wu YQ, Hu N, Liu YL (2010) Soil radionuclide contamination and radionuclide accumulation characteristics of competitive plants in a uranium tailings repository in South China. Res Environ Sci 23:719–725 (In Chinese)

    CAS  Google Scholar 

  • Pan YM, Yang GZ (1988) The soil background value and research methods of Hunan Province. China Environmental Science Press, Beijing. (In Chinese)

    Google Scholar 

  • Papastefanou C (1996) Radiological impact from atmospheric releases of 226Ra from coal-fired power plants. J Environ Radioact 32:105–114

    Article  CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814

    Article  CAS  PubMed  Google Scholar 

  • Pulhani VA, Dafauti S, Hegde AG, Sharma RM, Mishra UC (2005) Uptake and distribution of natural radioactivity in wheat plants from soil. J Environ Radioact 79:331–346

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Exp 60:115–126

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–648

    Article  CAS  Google Scholar 

  • Schnoor J (2002) Phytoremediation of soil and groundwater. Prepared for the ground-water remediation technologies analysis center. Technology evaluation report TE-02-01. U.S. Department of Energy. “Phytoremediation: natural attenuation that really works.” TIE Quarterly. Volume 6(1), Spring 1997

    Google Scholar 

  • Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180

    Article  CAS  Google Scholar 

  • Shinonaga T, Schimmack W, Gerzabek MH (2005) Vertical migration of 60Co, 137Cs and 226Ra in agricultural soils as observed in lysimeters under crop rotation. J Environ Radioact 79:93–106

    Article  CAS  PubMed  Google Scholar 

  • Soudek P, Petřík P, Vágner M, Tykva R, Plojhar V, Petrová Š, Vaněk T (2007a) Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. Europ J Soil Biol 43:251–261

    Article  CAS  Google Scholar 

  • Soudek P, Petrová Š, Benešová D, Tykva R, Vaňková R, Vaněk T (2007b) Comparison of 226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period. J Environ Radioact 97:76–82

    Article  CAS  PubMed  Google Scholar 

  • Soudek P, Petrová Š, Benešová D, Kotyza J, Vágner M, Vaňková R, Vaněk T (2010) Study of soil–plant transfer of 226Ra under greenhouse conditions. J Environ Radioact 101:446–450

    Article  CAS  PubMed  Google Scholar 

  • Soudek P, Petrová Š, Benešová D, Dvořáková M, Vaněk T (2011) Uranium uptake by hydroponically cultivated crop plants. J Environ Radioact 102:598–604

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Bhainsa KC, D’Souza SF (2010) Investigation of uranium accumulation potential and biochemical responses of an aquatic weed Hydrilla verticillata (L.f.) Royle. Bioresour Technol 101:2573–2579

    Article  CAS  PubMed  Google Scholar 

  • Thiry Y, Van Hees M (2008) Evolution of pH, organic matter and 226radium/calcium partitioning in U-mining debris following revegetation with pine trees. Sci Total Environ 393:111–117

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  PubMed  Google Scholar 

  • Vera Tomé F, Blanco Rodríguez P, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357

    Article  PubMed  Google Scholar 

  • Vera Tomé F, Blanco Rodríguez P, Lozano JC (2009) The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 74:293–300

    Article  PubMed  Google Scholar 

  • Verma VK, Singh YP, Rai JPN (2007) Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresour Technol 98:1664–1669

    Article  CAS  PubMed  Google Scholar 

  • Whicker FW, Hinton TG, Orlandini KA, Clark SB (1999) Uptake of natural and anthropogenic actinides in vegetable crops grown on a contaminated lake bed. J Environ Radioact 45:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The presented work was supported by Defense Industrial Technology Development Program (B3720132001), the National Natural Science Foundation of China (51274124), the Program of Science and Technology Department of Hunan Province (No. 2010GK2025), and the Program of Scientific Research Foundation of Education Department of Hunan Province (No. 10A103, 10C1134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hu, N., Ding, D., Li, G. (2014). Natural Plant Selection for Radioactive Waste Remediation. In: Gupta, D., Walther, C. (eds) Radionuclide Contamination and Remediation Through Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07665-2_2

Download citation

Publish with us

Policies and ethics