Skip to main content

Biomass Steam Gasification for Hydrogen Production: A Systematic Review

  • Chapter
  • First Online:
Biomass and Bioenergy
  • 2578 Accesses

Abstract

The production of hydrogen as a clean and sustainable fuel is becoming attractive due to the energy crisis and increasing environmental issues associated with fossil fuel usage. Biomass steam gasification with in situ carbon dioxide capture has good prospects for the production of hydrogen-rich gas. Furthermore, hydrogen yield can be enhanced using catalyst steam gasification. This chapter comprises the literature review on both the approaches, i.e., experimental and modeling used to study the hydrogen production from biomass gasification specifically using pure steam as gasification agent. There were several modeling approaches for gasification process based on the kinetics, equilibrium, and the fluid dynamics behaviors. A detailed discussion has been carried out in this chapter on modeling and simulation for hydrogen production from biomass based on kinetics modeling. Experimental studies have been published on steam gasification and steam gasification with CO2 capture and catalytic steam gasification has been discussed. Gasification for hydrogen production from oil palm empty fruit bunch has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya B, Dutta A, Basu P (2009) Chemical-looping gasification of biomass for hydrogen-enriched gas production with in-process carbon dioxide capture. Energy Fuel 23:5077–5083

    Article  CAS  Google Scholar 

  • Acharya B, Dutta A, Basu P (2010) An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. Int J Hydrogen Energy 35:1582–1589

    Article  CAS  Google Scholar 

  • Ahmed I, Gupta AK (2009) Syngas yield during pyrolysis and steam gasification of paper. Appl Energy 86:1813–1821

    Article  CAS  Google Scholar 

  • Ahmed TY, Ahmad MM, Yusup S, Inayat A, Khan Z (2012) Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renew Sust Energy Rev 16:2304–2315

    Article  CAS  Google Scholar 

  • Balat M (2008) Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield. Energy Sources A 30:552–564

    Article  CAS  Google Scholar 

  • Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Convers Manage 50:3158–3168

    Article  CAS  Google Scholar 

  • Clark Ii WW, Rifkin J (2006) A green hydrogen economy. Energy Policy 34:2630–2639

    Article  Google Scholar 

  • Corella J, Sanz A (2005) Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state. Fuel Process Technol 86:1021–1053

    Article  CAS  Google Scholar 

  • Corella J, Aznar MP, Caballero MA, Molina G, Toledo JM (2008a) 140 g H2/kg biomass d.a.f. by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer. Int J Hydrogen Energy 33:1820–1826

    Article  CAS  Google Scholar 

  • Corella J, Toledo J-M, Molina G (2008b) Biomass gasification with pure steam in fluidised bed: 12 variables that affect the effectiveness of the biomass gasifier. Int J Oil Gas Coal Technol 1:194–207

    Article  CAS  Google Scholar 

  • Florin NH, Harris AT (2008) Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem Eng Sci 63:287–316

    Article  CAS  Google Scholar 

  • Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842

    Article  CAS  Google Scholar 

  • Gil J, Corella J, Aznar MP, Caballero MA (1999) Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution. Biomass Bioenergy 17:389–403

    Article  CAS  Google Scholar 

  • Gómez-Barea A, Leckner B (2010) Modeling of biomass gasification in fluidized bed. Prog Energy Combust Sci 36:444–509

    Article  Google Scholar 

  • Gonzalez-Saiz J (1988) Advances in biomass gasfication in fluidized bed. Ph.D. Thesis, University of Saragossa

    Google Scholar 

  • Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energy Rev 14:334–343

    Article  CAS  Google Scholar 

  • Guo N, Caratzoulas S, Doren DJ, Sandler SI, Vlachos DG (2012) A perspective on the modeling of biomass processing. Energy Environ Sci 5:6703–6716

    Article  CAS  Google Scholar 

  • Guoxin H, Hao H (2009) Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass Bioenergy 33:899–906

    Article  Google Scholar 

  • Han L, Wang Q, Yang Y, Yu C, Fang M, Luo Z (2011) Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. Int J Hydrogen Energy 36:4820–4829

    Article  CAS  Google Scholar 

  • Hanaoka T, Yoshida T, Fujimoto S, Kamei K, Harada M, Suzuki Y, Hatano H, Yokoyama S-Y, Minowa T (2005) Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass Bioenergy 28:63–68

    Article  CAS  Google Scholar 

  • He M, Hu Z, Xiao B, Li J, Guo X, Luo S, Yang F, Feng Y, Yang G, Liu S (2009) Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of catalyst and temperature on yield and product composition. Int J Hydrogen Energy 34:195–203

    Article  CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  • Ismail K, Ahmad MAYA, Taufiq-Yap YH, Ahmad A (2011) Calcium oxide as potential catalyst for gasification of oil palm empty fruit bunch to produce syngas. Adv Mater Res 173:178–183

    Article  CAS  Google Scholar 

  • Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  CAS  Google Scholar 

  • Ji P, Feng W, Chen B (2009) Comprehensive simulation of an intensified process for H2 production from steam gasification of biomass. Ind Eng Chem Res 48:3909–3920

    Article  CAS  Google Scholar 

  • Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrogen Energy 34:8799–8817

    Article  CAS  Google Scholar 

  • Koppatz S, Pfeifer C, Rauch R, Hofbauer H, Marquard-Moellenstedt T, Specht M (2009) H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Process Technol 90:914–921

    Article  CAS  Google Scholar 

  • Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    Article  CAS  Google Scholar 

  • Lahijani P, Zainal ZA (2011) Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study. Bioresource Technol 102:2068–2076

    Article  CAS  Google Scholar 

  • Lee JM, Kim YJ, Lee WJ, Kim SD (1998) Coal-gasification kinetics derived from pyrolysis in a fluidized-bed reactor. Energy 23:475–488

    Article  CAS  Google Scholar 

  • Li J, Yin Y, Zhang X, Liu J, Yan R (2009) Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst. Int J Hydrogen Energy 34:9108–9115

    Article  CAS  Google Scholar 

  • Lü P, Kong X, Wu C, Yuan Z, Ma L, Chang J (2008) Modeling and simulation of biomass air-steam gasification in a fluidized bed. Front Chem Eng China 2:209–213

    Article  Google Scholar 

  • Mahishi MR, Goswami DY (2007) An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent. Int J Hydrogen Energy 32:2803–2808

    Article  CAS  Google Scholar 

  • Marquard-Möllenstedt T, Sichler P, Specht M, Michel M, Berger R, Hein KRG, Höftberger E, Rauch R, Hofbauer H (2004) New approach for biomass gasification to hydrogen 2nd world conference and technology exhibition on biomass for energy, industry and climate protection, Rome, Italy

    Google Scholar 

  • Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohammad Amran MS, Fakhru’l-Razi A (2011a) Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Convers Manage 52:1555–1561

    Article  CAS  Google Scholar 

  • Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohammad Amran MS, Fakhru’l-Razi A, Taufiq-Yap YH (2011b) Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew Sust Energy Rev 15:1258–1270

    Article  CAS  Google Scholar 

  • Nemtsov DA, Zabaniotou A (2008) Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chem Eng J 143:10–31

    Article  CAS  Google Scholar 

  • Nikoo MB, Mahinpey N (2008) Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 32:1245–1254

    Article  CAS  Google Scholar 

  • Ogi T, Nakanishi M, Fukuda Y, Matsumoto K (2013) Gasification of oil palm residues (empty fruit bunch) in an entrained-flow gasifier. Fuel 104:28–35

    Article  CAS  Google Scholar 

  • Pfeifer C, Puchner B, Hofbauer H (2009) Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chem Eng Sci 64:5073–5083

    Article  CAS  Google Scholar 

  • Ptasinski KJ (2008) Thermodynamic efficiency of biomass gasification and biofuels conversion. Biofuels Bioprod Biorefin 2:239–253

    Article  CAS  Google Scholar 

  • Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energy Rev 14:2841–2851

    Article  CAS  Google Scholar 

  • Resende FLP, Savage PE (2009) Expanded and updated results for supercritical water gasification of cellulose and lignin in metal-free reactors. Energy Fuel 23:6213–6221

    Article  CAS  Google Scholar 

  • Resende FLP, Savage PE (2010) Kinetic model for noncatalytic supercritical water gasification of cellulose and lignin. AIChE J 56:2412–2420

    CAS  Google Scholar 

  • Salaices E (2010) Catalytic steam gasification of biomass surrogates: a thermodynamic and kinetic approach. PhD Thesis, The University of Western Ontario

    Google Scholar 

  • Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99

    Article  CAS  Google Scholar 

  • Sheth PN, Babu BV (2009) Differential evolution approach for obtaining kinetic parameters in nonisothermal pyrolysis of biomass. Mater Manuf Process 24:47–52

    Article  CAS  Google Scholar 

  • Solomon BD, Banerjee A (2006) A global survey of hydrogen energy research, development and policy. Energy Policy 34:781–792

    Article  Google Scholar 

  • Sumathi S, Chai SP, Mohamed AR (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sust Energy Rev 12:2404–2421

    Article  CAS  Google Scholar 

  • Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic hydrogen production processes from biomass. Renew Sust Energy Rev 14:166–182

    Article  CAS  Google Scholar 

  • Umeki K, Yamamoto K, Namioka T, Yoshikawa K (2010) High temperature steam-only gasification of woody biomass. Appl Energy 87:791–798

    Article  CAS  Google Scholar 

  • Wang Y, Kinoshita CM (1992) Experimental analysis of biomass gasification with steam and oxygen. Solar Energy 49:153–158

    Article  CAS  Google Scholar 

  • Wang Y, Kinoshita CM (1993) Kinetic model of biomass gasification. Solar Energy 51:19–25

    Article  CAS  Google Scholar 

  • Wang Y, Yan L (2008) CFD studies on biomass thermochemical conversion. Int J Mol Sci 9:1108–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weerachanchai P, Horio M, Tangsathitkulchai C (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Biores Technol 100:1419–1427

    Article  CAS  Google Scholar 

  • Wei L, Xu S, Liu J, Liu C, Liu S (2008) Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy Fuel 22:1997–2004

    Article  CAS  Google Scholar 

  • Xiao X, Le DD, Li L, Meng X, Cao J, Morishita K, Takarada T (2010) Catalytic steam gasification of biomass in fluidized bed at low temperature: conversion from livestock manure compost to hydrogen-rich syngas. Biomass Bioenergy 34:1505–1512

    Article  CAS  Google Scholar 

  • Xu G, Murakami T, Suda T, Kusama S, Fujimori T (2005) Distinctive effects of CaO additive on atmospheric gasification of biomass at different temperatures. Ind Eng Chem Res 44:5864–5868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abrar Inayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Inayat, A., Ahmad, M.M., Yusup, S., Mutalib, M.I.A., Khan, Z. (2014). Biomass Steam Gasification for Hydrogen Production: A Systematic Review. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_19

Download citation

Publish with us

Policies and ethics