Skip to main content

Straw Availability, Quality, Recovery, and Energy Use of Sugarcane

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Sugarcane straw is destroyed through burning before harvest or left on the ground for decomposition. Sugarcane straw is composed of cellulose (33.30–36.10 %), hemicelluloses (18.40–28.90 %), lignin (25.80–40.70 %), ashes (2.10–11.70 %), and extractives (5.30–11.50 %). Sugarcane straw availability depends on the sugarcane variety and age of harvesting. It can be used for alternative energy production and improvement of soil properties such as soil erosion, moisture content, and soil carbon stock. The biomass of sugarcane straw can be converted into biofuel through pyrolysis. The sugarcane straw has potentiality that could produce textile fibers. Bioelectricity is environmentally friendly produced from sugarcane straw which contributes to economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade NSF, Martins Filho MV, Torres JLR, Pereira GT, Marques J Jr (2011) Impacto tecnicoe economico das perdas desolo enutrientes por erosao no cultivo da cana-de-ac¸u car. Engenharia Agricola 31:539–550

    Article  Google Scholar 

  • Andrade SJ, Cristale J, Soares Silva FS, Zocolo GJ, Marchi MRR (2010) Contribution of sugar-cane harvesting season to atmospheric contamination by polycyclic aromatic hydrocarbons (PAHs) in Araraquara city. Southeast Brazil Atmos Environ 44:2913–2919

    Google Scholar 

  • Andraski BJ, Mueller DH, Daniel TC (1985) Effects of tillage and rainfall simulation date on water and soil losses. Soil Sci Soc Am J 49:1512–1517

    Article  Google Scholar 

  • Arbex MA, Cançado JED, Pereira LAA, Braga ALF, Saldiva PHN (2004) Biomass burning and health effects. J Bras Pneumol 30:158–175

    Article  Google Scholar 

  • Canellas LP, Velloso ACX, Marciano CR, Ramalho JFGP, Rumjanek VM, Rezende CE, Santos GA (2003) Chemical properties of a Cambisol cultivated with cane sugar, with preservation of trash and vinasse for a long time. R Bras Ci Solo 27:935–944

    Article  CAS  Google Scholar 

  • Canilha L, Carvalho W, Giulietti M, Felipe MDGA, Silva JBAE (2008) Clarification of a wheat straw-derived medium with ion-exchange resins for xylitol crystallization. J Chem Technol Biotechnol 83:715–721

    Article  CAS  Google Scholar 

  • Carrier M, Hugo T, Gorgens J, Knoetze H (2011) Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis 90:18–26

    Article  CAS  Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, Rijeka, Croatia, pp 225–246

    Google Scholar 

  • Contreras AM, Rosa E, Pérez M, van Langenhove H, Dewulf J (2009) Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J Clean Product 17:772–779

    Article  Google Scholar 

  • Cortez LAB, Lora ES (2006) Biomassa para energia. Editora da Unicamp, Campinas-SP, Brasil

    Google Scholar 

  • Costa SM, Mazzola PG, Silva JCAR, Pahl R, PessoaJr A, Costa SA (2013) Use of sugar cane straw as a source of cellulose for textile fiber production. Ind Crops Prod 42:189–194

    Article  CAS  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84

    Chapter  Google Scholar 

  • Dawson L, Boopathy R (2008) Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification. Bioresources 3:452–460

    CAS  Google Scholar 

  • DeSouza AP, Buckeridge MS (2010) Photosynthesis in sugarcane and its strategic importance to face the global climatic change. In: Cortez LAB (ed) Sugarcane bioethanol: R&D for productivity and sustainability. Edgard Blucher, Sao Paulo, pp 320–323

    Google Scholar 

  • Dinardo-Miranda LL, Vasconcelos ACM, Landell MGA (2008) Cana-de-acuar, compinas, Institute Agronomico, p 349–404

    Google Scholar 

  • Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • França DA, Longo KM, Neto TGS, Santos JC, Freitas SR, Rudorff BFT, Cortez EV, Anselmo E, Carvalho JA Jr (2012) Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements. Atmosphere 03:164–180

    Article  Google Scholar 

  • Fullana A, Contreras JA, Striebich RC, Sidhu SS (2005) Multidimensional GC/MS analysis of pyrolytic oils. J Anal Appl Pyrolysis 74:315–326

    Article  CAS  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  PubMed  Google Scholar 

  • Gould JM, Freer SN (1984) High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H2O2. Biotechnol Bioeng 26:628–631

    Article  CAS  PubMed  Google Scholar 

  • Ho N, Chen WYZ, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howard RL, Abotsi E, Rensburg JEL, Howard S (2003) Lignocellulosic biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    CAS  Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21

    Article  CAS  Google Scholar 

  • Huda S, Reddy N, Karst D, Xu W, Yang W, Yang YJ (2007) Non-traditional bio-fibers for a new textile industry. J Biobased Mater Bioenergy 1:177–190

    Article  Google Scholar 

  • Izidorio R, Martins Filho MV, Marques Junior J, Souza ZM, Pereira GT (2005) Perdas de nutrientes por erosao e sua distribuic¸ao espacial em area sob cana-de-ac¸u´car. Engen Agri 25:660–670

    Google Scholar 

  • Knappert DR, Grethlein HE, Converse AO (1981) Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng 11:67–77

    CAS  Google Scholar 

  • Krishna SH, Chowdary GV (2000) Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J Agric Food Chem 48:1971–1976

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Ericsson KEL (1997) Microorganisms and enzymes involved in the plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Leal MRLV, Galdos MV, Scarpare FV, Seabra JEA, Walter A, Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19

    Article  Google Scholar 

  • Lenowicsz A, Matuszewska A, Luterek J, Ziegenhagen D, Wasilewska WM, Cho NS (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  Google Scholar 

  • Li S, Sanna A, Andresen JM (2011) Influence of temperature on pyrolysis of recycled organic matter from municipal solid waste using an activated olivine fluidized bed. Fuel Process Technol 92:1776–1782

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbial Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Lu X, Zhang Y, Angelidaki I (2009) Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour Technol 100:3048–3053

    Article  CAS  PubMed  Google Scholar 

  • Lynn M, Boopathy R, Boykin D, Weaver MA, Viator R, Johnson R (2010) Sugarcane residue decomposition by white rot and brown rot microorganisms. Sugarcane Int J 28:37–42

    Google Scholar 

  • Maiti S, Dey S, Purakayastha S, Ghosh B (2006) Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Bioresour Technol 97:2065–2070

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Perez JM, Rocha JD, Barbosa-Cortez LA, Penedo-Medina M, Luengo CA, Cascarosa E (2013) Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Appl Termal Eng 56:167–175

    Article  CAS  Google Scholar 

  • Morf P, Hasler P, Nussbaumer T (2002) Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81:843–853

    Article  CAS  Google Scholar 

  • Moriya RY, Goncalves AR, Duarte MCT (2007) Ethanol/water pulps from sugarcane straw and their biobleching with xylanase from Bacillus pumilus. Appl Biochem Biotechnol 137–140:501–513

    PubMed  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  PubMed  Google Scholar 

  • Osma JF, Herrera JLT, Couto SR (2007) Banana skin; a novel waste for laccase production by Trametes pubescens under solid state conditions application to synthetic dye decoloration. Dyes Pigm 75:32–37

    Article  CAS  Google Scholar 

  • Paes LAD, Hassuani SJ (2005) Potential trash and biomass of the sugarcane plantation, including trash recovery factors. In: Hassuani SJ, Leal MLRV, Macedo IC (eds) Biomass power generation. Sugarcane bagasse and trash, 1st edn. PNUD and CTC, Piracicaba, Brazil, p 19

    Google Scholar 

  • Razafimbelo T, Barthes B, Larre-Larrouy MC, De Luca EF, Laurent JY, Cerri CC, Feller C (2006) Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. Agr Ecosyst Environ 115:285–289

    Article  Google Scholar 

  • Reddy N, Yang Y (2009) Properties of natural cellulose fibers from hop stems. Carbohydr Polym 77:898–902

    Article  CAS  Google Scholar 

  • Saad MBW, Oliveira LRM, Candido RG, Quintana G, Rocha GJM, Goncalves AR (2008) Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzyme Microb Technol 43:220–225

    Article  CAS  Google Scholar 

  • Sfetsas T, Michailof C, Lappas A, Li Q, Kneale B (2011) Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr 1218:3317–3325

    Article  CAS  Google Scholar 

  • Shrivastava AK, Shrivastava AK, Solomon S (2011) Sustaining sugarcane productivity under depleting water resources. Curr Sci 101:748–754

    Google Scholar 

  • Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99:8394–8399

    Article  CAS  PubMed  Google Scholar 

  • Suhardi VSH, Prasai B, Samaha D, Boopathy R (2013) Combined biological and chemical pretreatment method for lignocellulosic ethanol production from energy cane. Renew Bioresource 1:1–5

    Article  Google Scholar 

  • Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  • Thorburn PJ, Van Antwerpen R, Meyer JH, Bezuidenhout CN (2002) The impact of trash management on soil carbon and nitrogen: I modelling long-term experimental results in the SouthAfrican sugar industry. Proc S Afr Sugar Technol 76:260–268

    Google Scholar 

  • Tominaga TT, Cassaro FAM, Bacchi OOS, Reichardt K, Oliveira JCM, Timm LC (2002) Variability of soil water content and bulk density in a sugarcane field. Austr J Soil Res 40:604–614

    Article  Google Scholar 

  • Toriz G, Gatenholm P, Seiler BD, Tindall D, Toriz G, Gatenholm P, Seiler BD, Tindall D (2005) Cellulose fiber-reinforced cellulose esters: biocomposites for the future. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton, p 617

    Google Scholar 

  • Wood AW (1991) Management of crop residues following green harvesting of sugarcane in north Queensland. Soil Tillage Res 20:69–85

    Article  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abul Kalam Azad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Azad, M.A.K., Islam, M.S., Amin, L. (2014). Straw Availability, Quality, Recovery, and Energy Use of Sugarcane. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_16

Download citation

Publish with us

Policies and ethics