Skip to main content

Studies on Okra Bast Fibre-Reinforced Phenol Formaldehyde Resin Composites

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Bast fibres are mainly composed of lignocellulosic materials. It is extracted from the outer cell layers of the stems of different plants species. In ancient times, bast fibres were used for making various products like rope, bags, mats and coarse textile materials to mitigate daily demands. However, such trendy usages of bast fibres were decreased behind the invention of cheap synthetic fibre. Although synthetic fibres have good strength and longibility, they are causing serious environmental pollution for their nonbiodegradable nature. To achieve the ‘sustainable development’, the usages of bast fibres are explored again. Diversified use of bast fibres as reinforcements of polymer matrix composites becomes popular due to its satisfactory engineering properties. The plant kingdom has a vast source of bast fibres. Few of them are utilized for reinforcing polymer composites and many species remain unexplored. Okra (Abelmoschus esculentus) bast fibre has no commercial value currently. It is considered as agricultural waste product after collecting vegetable. In fact, its chemical composition is almost similar to other commercial bast fibres, such as α-cellulose (60–70 %), hemicelluloses (15–20 %), lignin (5–10 %) and pectins (3–5 %) along with trace amount of water-soluble materials. The fibre exhibited high breaking tenacity (40–60 MPa) and high breaking elongation (3–5 %). In this chapter, okra bast fibre is introduced as a reinforcement material for fabrication of phenol formaldehyde resin composites. Manufacturing techniques and effect of fibre modification on their mechanical, thermal and biodegradation properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akil HM, Cheng LW, Ishak ZAM, Bakar A, Rahman MAA (2009) Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Compos Sci Technol 69:1942–1948

    Article  CAS  Google Scholar 

  • Alam MS, Islam MS, Islam MT, Islam MN, Khan GMA (2010) Wood flour reinforced polypropylene composite: influence of particle size and chemical treatment on the mechanical properties. J Appl Sci Technol 7:87–92

    Google Scholar 

  • Aquino EMF, Sarmento LPS, Oliveira W, Silva RV (2007) Moisture effect on degradation of jute/glass hybrid composites. J Reinforced Plast Compos 26(2):219–233

    Article  CAS  Google Scholar 

  • Behzad T, Sain M (2005) Process for manufacturing a high performance natural fiber composite by sheet molding. SME technical paper, no. 137

    Google Scholar 

  • Ben G, Shoji A (2003) Development of pultrusion techniques of phenolic foam composites. Report of the Research Institute of Industrial Technology, Nihon University, no. 69

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibres. J Appl Polym Sci 102(5):5050–5056

    Article  CAS  Google Scholar 

  • El-Zawawy WK, Ibrahim MM (2003) Synthesis and characterization of cellulose resins. Polym Adv Technol 14:623–631

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibres in PVA nanocomposites. J Appl Polym Sci 128(5):3220–3230

    Article  CAS  Google Scholar 

  • Ganga Rao HVS, Taly N, Vijay PV (2007) Reinforced concrete design with FRP composites, 1st edn. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Holopainen T, Alvila L, Rainio J, Pakkanen TT (1997) Phenol-formaldehyde resol resins studied by 13C-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. J Appl Polym Sci 66:1183–1193

    Article  CAS  Google Scholar 

  • Indira KN, Parameswaranpillai JK, Thomas S (2013) Mechanical properties and failure topography of banana fiber PF macrocomposites fabricated by RTM and CM techniques. ISRN Polym Sci 2013:1–8

    Article  Google Scholar 

  • Joseph K, Thomas S, Pavithran C, Brahmakumar M (1993) Tensile properties of short sisal fibre-reinforced polyethylene composites. J Appl Polym Sci 47:1731–1739

    Article  CAS  Google Scholar 

  • Joseph S, Sreekala MS, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892

    Article  CAS  Google Scholar 

  • Kalaprasad G, Pavithran C, Neelakantan NR, Balakrishnan S, Thomas S (1996) Hybrid effect in the mechanical properties of short sisal/glass hybrid fibre reinforced low density polyethylene composites. J Reinforced Plast Compos 15:48–73

    CAS  Google Scholar 

  • Khan GMA, Alam MS (2013) Surface chemical treatments of jute fibre for high value composite uses. Res Rev J Mat Sci 1(2):39–44

    Google Scholar 

  • Khan GMA, Alam MS, Razzaque SMA, Saheruzzaman M, Rahman MH, Islam MS (2009) Surface modification of okra bast fibre and its physico-chemical characteristics. Fibre Polym 10(1):65–70

    Article  Google Scholar 

  • Khan GMA, Palash SRS, Alam MS, Chakraborty AK, Gafur MA, Terano M (2012) Isolation and characterization of betel nut leaf fiber: its potential application in making composites. Polym Compos 33:764–772

    Article  Google Scholar 

  • Lü J, Zhong JB, Wei C (2006) Studies on the properties of sisal fibre/phenol formaldehyde resin in-situ composites. Res J Text Apparel 10(3):51–58

    Google Scholar 

  • Majumdar S (2002) Prediction of fibre quality from anatomical studies of jute stem: part II—prediction of strength. Indian J Fibre Text Res 27(3):254

    CAS  Google Scholar 

  • Mondal MIH, Khan GMA (2008) Effect of acrylic monomers grafting onto jute constituents with potassium persulfate initiator catalysed by Fe(II). Cellulose Chem Technol 42(1–3):9–16

    CAS  Google Scholar 

  • Mukherjee A, Ganguly PK, Sur D (1993) Structural mechanics of jute: the effects of hemicellulose or lignin removal. J Text Inst 84(3):348

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute, and kapok for composite reinforcement. Die Angew Makromol Chem 272:108

    Article  CAS  Google Scholar 

  • Nystrom B, Joffe R, Langstorm R (2007) Microstructure and strength of injection molded natural fibre composites. J Reinforced Plast Compos 26(6):579–599

    Article  Google Scholar 

  • Park DC, Kim SS, Kim BC, Lee SM, Lee DG (2006) Wear characteristics of carbon-phenolic woven composites mixed with nano-particles. Compos Struct 74:89

    Article  Google Scholar 

  • Paulo AS, Marcia ASS, Karen KGF, Marco ADP (2007) Polyamide-6/vegetal fibre composite prepared by extrusion and injection molding. Composites Part A 38:2404–2411

    Article  Google Scholar 

  • Pizzi A, Lu X, Garcia R (1999) Lignocellulosic substrates influence on TTT and CHT curing diagrams of polycondensation resins. J Appl Polym Sci 71:915

    Article  CAS  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135

    Article  CAS  Google Scholar 

  • Rosa IMD, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254

    Article  Google Scholar 

  • Rout J, Misra M, Mohanty AK (1999) Surface modification of coir fibres I: studies on graft copolymerization of methyl methacrylate on to chemically modified coir fibres. Polym Adv Technol 10(6):336

    Article  CAS  Google Scholar 

  • Samivel P, Babu AR (2013) Mechanical behavior of stacking sequence in kenaf and banana fiber reinforced-polyester laminate. Int J Mech Eng Rob Res 2(4):348–360

    Google Scholar 

  • Satapathy BK, Bijwe J (2006) Composite friction materials based on organic fibres: sensitivity of friction and wear to operating variables. Compos A Appl 37:1557

    Article  Google Scholar 

  • Shafizadeh JE, Guionnet S, Tillman MS, Seferis JC (1999) Synthesis and characterization of phenolic resole resins for composite applications. J Appl Polym Sci 73:505

    Article  CAS  Google Scholar 

  • Sharma HSS, Fraser TW, McCall D, Lyons G (1995) Fine structure of chemically modified flax fibre. J Text Inst 86(4):539

    Article  CAS  Google Scholar 

  • Sreekala MS, George J, Kumaran MG, Thomas S (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62:339–353

    Article  CAS  Google Scholar 

  • Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2011) Surface-modified sisal fibre-reinforced eco-friendly composites: mechanical, thermal, and diffusion studies. Polym Compos 32:131

    Article  CAS  Google Scholar 

  • Sreenivasan S, Iyer PB, Iyer KRK (1996) Influence of delignification and on the fine structure of coir fibres (CocosNucifera). J Mater Sci 31:721

    Article  CAS  Google Scholar 

  • Sun ZY, Han HS, Dai GC (2010) Mechanical properties of injection-molded natural fibre-reinforced polypropylene composites: formulation and compounding processes. J Reinforced Plast Compos 29:637–650

    Article  CAS  Google Scholar 

  • Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54:355–360

    Article  Google Scholar 

  • Varma DS, Varma M, Varma IK (1984) Coir fibres: part I: effect of physical and chemical treatments on properties. Text Res J 54(12):827

    Article  CAS  Google Scholar 

  • Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871

    Article  CAS  Google Scholar 

  • Weyenberg IV, Truong T, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Composite Part A 37:1368–1376

    Article  Google Scholar 

  • Yan Y, Shi X, Liu J, Zhao T, Yu Y (2002) Thermosetting resin system based on novolak and bismaleimide for resin-transfer molding. J Appl Polym Sci 83:1651–1657

    Article  CAS  Google Scholar 

  • Yuhazri M, Phongsakorn Y, Haeryip Sihombing PT (2010) A comparison process between vacuum infusion and Hand Lay-up method toward kenaf/polyester composites. Int J Basic Appl Sci 10(03):54–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Arifuzzaman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, G.M.A., Haque, M.A., Alam, M.S. (2014). Studies on Okra Bast Fibre-Reinforced Phenol Formaldehyde Resin Composites. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_10

Download citation

Publish with us

Policies and ethics