Skip to main content

Robustness of Mixture IRT Models to Violations of Latent Normality

  • Conference paper
Quantitative Psychology Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 89))

Abstract

Unidimensional item response theory (IRT) models assume that a single model applies to all people in the population. Mixture IRT models can be useful when subpopulations are suspected. The usual mixture IRT model is typically estimated assuming normally distributed latent ability. Research on normal finite mixture models suggests that latent classes potentially can be extracted even in the absence of population heterogeneity if the distribution of the data is nonnormal. Empirical evidence suggests, in fact, that test data may not always be normal. In this study, we examined the sensitivity of mixture IRT models to latent nonnormality. Single-class IRT data sets were generated using different ability distributions and then analyzed with mixture IRT models to determine the impact of these distributions on the extraction of latent classes. Preliminary results suggest that estimation of mixed Rasch models resulted in spurious latent class problems in the data when distributions were bimodal and uniform. Mixture 2PL and mixture 3PL IRT models were found to be more robust to nonnormal latent ability distributions. Two popular information criterion indices, Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC), were used to inform model selection. For most conditions, the performance of BIC index was better than the AIC for selection of the correct model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  MATH  MathSciNet  Google Scholar 

  • Alexeev N, Templin J, Cohen AS (2011) Spurious latent classes in the mixture Rasch model. J Educ Meas 48:313–332. doi:10.1111/j.1745-3984.2011.00146.x

    Article  Google Scholar 

  • Arminger G, Stein P, Wittenberg J (1999) Mixtures of conditional mean- and covariance-structure models. Psychometrika 64:475–494. doi:10.1007/BF02294568

    Article  MATH  Google Scholar 

  • Bauer DJ (2007) Observations on the use of growth mixture models in psychological research. Multivar Behav Res 42:757–786. doi:10.1080/00273170701710338

    Article  Google Scholar 

  • Bauer DJ, Curran PJ (2003) Distributional assumptions of growth mixture models: implications for over-extraction of latent trajectory classes. Psychol Methods 8:338–363. doi:10.1037/1082-989X.8.3.338

    Article  Google Scholar 

  • Bock RD, Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika 46:443–459. doi:10.1007/BF02293801

    Article  MathSciNet  Google Scholar 

  • Bock RD, Zimowski MF (1997) Multiple group IRT. In: van der Linden WJ, Hambleton RK (eds) Handbook of modern item response theory. Springer, New York, pp 433–448

    Chapter  Google Scholar 

  • Bolt DM, Cohen AS, Wollack JA (2002) Item parameter estimation under conditions of test speededness: application of a mixture Rasch model with ordinal constraints. J Educ Meas 39:331–348. doi:10.1111/j.1745-3984.2002.tb01146.x

    Article  Google Scholar 

  • Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370

    Article  MATH  MathSciNet  Google Scholar 

  • Clogg CC (1995) Latent class models. In: Arminger G, Clogg CC, Sobel ME (eds) Handbook of statistical modeling for the social and behavioral sciences. Plenum Press, New York, pp. 311–359

    Chapter  Google Scholar 

  • Cohen AS, Bolt DM (2005) A mixture model analysis of differential item functioning. J Educ Meas 42:133–148. doi:10.1111/j.1745-3984.2005.00007

    Article  Google Scholar 

  • Cohen AS, Gregg N, Deng M (2005) The role of extended time and item content on a high-stakes mathematics test. Learn Disabil Res Pract 20:225–233. doi:10.1111/j.1540-5826.2005.00138.x

    Article  Google Scholar 

  • Congdon P (2003) Applied Bayesian modelling. Wiley, New York

    Book  MATH  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904. doi:10.1080/01621459.1996.10476956

    Article  MATH  MathSciNet  Google Scholar 

  • Embretson SE, Reise SP (2000) Item response theory for psychologists. Erlbaum, Mahwah

    Google Scholar 

  • Fleishman AI (1978) A method for simulating non-normal distributions. Psychometrika 43:521–532. doi:10.1007/BF02293811

    Article  MATH  Google Scholar 

  • Florida Department of Education (2002) Florida Comprehensive Assessment Test. Tallahassee, FL: Author

    Google Scholar 

  • Frick H, Strobl C, Leisch F, Zeileis A (2012) Flexible Rasch mixture models with package psychomix. J Stat Softw 48(7):1–25. Retrieved from http://www.jstatsoft.org/v48/i07/

    Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472. Retrieved from http://www.jstor.org/stable/2246093

    Article  Google Scholar 

  • Jedidi K, Jagpal HS, DeSarbo WS (1997) Finite mixture structural equation models for response-based segmentation and unobserved heterogeneity. Mark Sci 16:39–59. doi:10.1287/mksc.16.1.39

    Article  Google Scholar 

  • Kolen MJ, Brennan RL (2004) Test equating: methods and practices, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Li F, Duncan TE, Duncan SC (2001) Latent growth modeling of longitudinal data: a finite growth mixture modeling approach. Struct Equ Model 8:493–530. doi:10.1207/S15328 007SEM0804_01

    Article  MathSciNet  Google Scholar 

  • Li F, Cohen AS, Kim S-H, Cho S-J (2009) Model selection methods for mixture dichotomous IRT models. Appl Psychol Meas 33:353–373. doi:10.1177/0146621608326422

    Article  MathSciNet  Google Scholar 

  • Lo Y, Mendell NR, Rubin DB (2001) Testing the number of components in a normal mixture. Biometrika 88:767–778. doi:10.1093/biomet/88.3.767

    Article  MathSciNet  Google Scholar 

  • Lubke GH, Muthén BO (2005) Investigating population heterogeneity with factor mixture models. Psychol Methods 10:21–39. doi:10.1037/1082-989X.10.1.21

    Article  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    MATH  Google Scholar 

  • Mislevy RJ, Verhelst N (1990) Modeling item responses when different subjects employ different solution strategies. Psychometrika 55:195–215. doi:10.1007/BF02295283

    Article  Google Scholar 

  • Muthén LK, Muthén BO (2011) Mplus user’s guide, 6th edn. Author, Los Angeles

    Google Scholar 

  • Nylund KL, Asparouhov T, Muthén BO (2007) Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct Equ Model 14:535–569. doi:10.1080/10705510701575396

    Article  MathSciNet  Google Scholar 

  • Pearson ES, Please NW (1975) Relation between the shape of population distribution and the robustness of four simple test statistics. Biometrika 62:223–241. doi:10.1093/biomet/62.2.223

    Article  MATH  MathSciNet  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11. Retrieved from http://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf#page=7

    Google Scholar 

  • Preinerstorfer D, Formann AK (2011) Parameter recovery and model selection in mixed Rasch models. Br J Math Stat Psychol 65:251–262. doi:10.1111/j.2044-8317.2011.02020.x

    Article  MathSciNet  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Retrieved from http://www.R-project.org/

    Google Scholar 

  • Raftery AE, Lewis S (1992) How many iterations in the Gibbs sampler. Bayesian Stat 4:763–773

    Google Scholar 

  • Reckase MD (2009) Multidimensional item response theory. Springer, New York

    Book  Google Scholar 

  • Rost J (1990) Rasch models in latent classes: an integration of two approaches to item analysis. Appl Psychol Meas 14:271–282. doi:10.1177/014662169001400305

    Article  Google Scholar 

  • Rost J, von Davier M (1993) Measuring different traits in different populations with the same items. In: Steyer R, Wender KF, Widaman KF (eds) Psychometric methodology. Proceedings of the 7th European meeting of the psychometric society in Trier. Gustav Fischer, Stuttgart, pp 446–450

    Google Scholar 

  • Rost J, Carstensen CH, von Davier M (1997) Applying the mixed-Rasch model to personality questionaires. In: Rost R, Langeheine R (eds) Applications of latent trait and latent class models in the social sciences. Waxmann, New York, pp 324–332

    Google Scholar 

  • Samuelsen KM (2005) Examining differential item functioning from a latent class perspective. Doctoral dissertation, University of Maryland

    Google Scholar 

  • SAS Institute (2008) SAS/STAT 9.2 user’s guide. SAS Institute, Cary

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464. doi:10.1214/aos/1176344136

    Article  MATH  Google Scholar 

  • Sclove LS (1987) Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 52:333–343. doi:10.1007/BF02294360

    Article  Google Scholar 

  • Seong TJ (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the characteristics of the prior ability distributions. Appl Psychol Meas 14:299–311. doi:10.1177/014662169001400307

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP (1998) Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models. Research Report No. 98-009. MRC Biostatistics Unit, Cambridge

    Google Scholar 

  • Spiegelhalter D, Thomas A, Best N (2003) WinBUGS (version 1.4) [Computer software]. Biostatistics Unit, Institute of Public Health, Cambridge

    Google Scholar 

  • Thissen D (2003) MULTILOG: multiple, categorical item analysis and test scoring using item response theory (Version 7.03) [Computer software]. Scientific Software International, Chicago

    Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1985) Statical analysis of finite mixture distributions. Wiley, Chichester

    Google Scholar 

  • Tofighi D, Enders CK (2007) Identifying the correct number of classes in a growth mixture model. In: Hancock GR, Samuelsen KM (eds) Mixture models in latent variable research. Information Age, Greenwich, pp 317–341

    Google Scholar 

  • Vermunt JK, Magidson J (2005) Latent GOLD (Version 4.0) [Computer software]. Statistical Innovations, Inc., Belmont

    Google Scholar 

  • von Davier M (2001) WINMIRA 2001 [Computer software]. Assessment Systems Corporation, St. Paul

    Google Scholar 

  • von Davier M (2005) mdltm: software for the general diagnostic model and for estimating mixtures of multidimensional discrete latent traits models [Computer software]. ETS, Princeton

    Google Scholar 

  • von Davier M, Rost J (1997) Self monitoring-A class variable? In: Rost J, Langeheime R (eds) Applications of latent trait and latent class models in the social sciences. Waxmann, Muenster, pp 296–305

    Google Scholar 

  • von Davier M, Rost J (2007) Mixture distribution item response models. In: Rao CR, Sinharay S (eds) Handbook of statistics. Psychometrics, vol 26. Elsevier, Amsterdam, pp 643–661

    Google Scholar 

  • von Davier M, Rost J, Carstensen CH (2007) Introduction: extending the Rasch model. In: von Davier M, Carstensen CH (eds) Multivariate and mixture distribution Rasch models: extensions and applications. Springer, New York, pp 1–12

    Chapter  Google Scholar 

  • Wall MM, Guo J, Amemiya Y (2012) Mixture factor analysis for approximating a nonnormally distributed continuous latent factor with continuous and dichotomous observed variables. Multivar Behav Res 47:276–313. doi:10.1080/00273171.2012.658339

    Article  Google Scholar 

  • Wollack JA, Cohen AS, Wells CS (2003) A method for maintaining scale stability in the presence of test speededness. J Educ Meas 40:307–330. doi:10.1111/j.1745-3984.2003.tb01149.x

    Article  Google Scholar 

  • Woods CM (2004) Item response theory with estimation of the latent population distribution using spline-based densities. Unpublished doctoral dissertation, University of North Carolina at Chapel Hill

    Google Scholar 

  • Yamamoto KY, Everson HT (1997) Modeling the effects of test length and test time on parameter estimation using the HYBRID model. In: Rost J, Langeheine R (eds) Applications of latent trait and latent class models in the social sciences. Waxmann, Munster, pp 89–98

    Google Scholar 

  • Zwinderman AH, Van den Wollenberg AL (1990) Robustness of marginal maximum likelihood estimation in the Rasch model. Appl Psychol Meas 14:73–81. doi:10.1177/014662 169001400107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sen, S., Cohen, A.S., Kim, SH. (2015). Robustness of Mixture IRT Models to Violations of Latent Normality. In: Millsap, R., Bolt, D., van der Ark, L., Wang, WC. (eds) Quantitative Psychology Research. Springer Proceedings in Mathematics & Statistics, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-07503-7_3

Download citation

Publish with us

Policies and ethics