Skip to main content

Multi-objective Optimization of Methane Producing UASB Reactor Using a Combined Pareto Multi–objective Differential Evolution Algorithm (CPMDE)

  • Conference paper
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V

Abstract

Multi–objective optimization of an operating industrial wastewater treatment plant was carried out using combined Pareto multi–objective differential evolution (CPMDE) algorithm. The algorithm combines methods of Pareto ranking and Pareto dominance selections to implement a novel selection scheme at each generation. Modified methane generation and the Stover–Kincannon kinetic mathematical models were formulated for optimization. The conflicting objective functions that are optimized in this study include, maximization of volumetric methane production rate in the biogas produced at a lower hydraulic retention time and optimum temperature; minimization of effluent substrate concentration in order to meet the environmental discharge requirements based on the standard discharge limit, and finally, the minimization of biomass washout from the reactor. Wastewater flow rate, hydraulic retention time, efficiency of substrate utilization within the reactor, influent substrate concentration and operational temperature are the important decision variables related to this process. A set of non-dominated solutions with the high methane production rate at lower biomass and almost constant solution for the effluent concentration was obtained for the multi-objective optimization problem. In this study, the simulation results showed that the CPMDE approach can generate a better Pareto-front of the selected problem and its ability to solve unconstrained, constrained and real-world optimization problem was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gueguim Kana, E.B., Oloke, J.K., Lateef, A., Adesiyan, M.O.: Modeling And Optimization of Biogas Production on Saw Dust and Other Co-Substrates Using Artificial Neural Network and Genetic Algorithm. Renewable Energy (2012), doi:10.1016/j.renene.2012.03.027

    Google Scholar 

  2. Babu, B.V., Chakole, P.G., Mubeen, J.H.S.: Multiobjective Differential Evolution (MODE) for Optimization of Adiabatic Styrene Reactor. Chemical Engineering Science 60(17), 4822–4837 (2005)

    Article  Google Scholar 

  3. Iqbal, J., Guria, C.: Optimization of an Operating Domestic Wastewater Treatment Plant Using Elitist Non-Dominated Sorting Genetic Algorithm. Chemical Engineering Research and Design 87(11), 1481–1496 (2009)

    Article  Google Scholar 

  4. Kusiak, A., Zheng, H.Y., Song, Z.: Wind Farm Power Prediction: A Data-Mining Approach. Wind Energy 12(3), 275–293 (2009)

    Article  Google Scholar 

  5. Abu Qdais, H., Bani Hani, K., Shatnawi, N.: Modeling and Optimization of Biogas Production From a Waste Digester Using Artificial Neural Network and Genetic Algorithm. Resources, Conservation and Recycling 54(6), 359–363 (2010), doi:10.1016/j.resconrec.2009.08.012

    Article  Google Scholar 

  6. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, 1st edn. John Wiley & Sons Ltd., Chichester (2001)

    Google Scholar 

  7. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. In: Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 1–24 (2011)

    Google Scholar 

  8. Adeyemo, J., Otieno, F.: Differential Evolution Algorithm for Solving Multi-Objective Crop Planning Model. Agricultural Water Management 97(6), 848–856 (2010), http://dx.doi.org/10.1016/j.agwat.2010.01.013

    Article  Google Scholar 

  9. Das, S., Abraham, A., Konar, A.: Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives. In: Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, E.-P. (eds.) Advances of Computational Intelligence in Industrial Systems. SCI, vol. 116, pp. 1–38. Springer, Heidelberg (2008), www.springerlink.com

    Chapter  Google Scholar 

  10. Sendrescu, D.: Parameter Identification of Anaerobic Wastewater Treatment Bioprocesses Using Particle Swarm Optimization. Mathematical Problems in Engineering 2013, 8 (2013), doi:10.1155/2013/103748

    Google Scholar 

  11. Enitan, A.M., Adeyemo, J.: Food Processing Optimization Using Evolutionary Algorithms. African Journal of Biotechnology 10(72), 16120–16127 (2011)

    Google Scholar 

  12. Wei, X., Kusiak, A.: Optimization of Biogas Production Process in a Wastewater Treatment Plant. In: Proceedings of the 2012 Industrial and Systems Engineering Research Conference (2012)

    Google Scholar 

  13. Soons, Z.I.T.A., Streefland, M., van Straten, G., van Boxtel, A.J.B.: Assessment of Near Infrared and “Software Sensor” for Biomass Monitoring and Control. Chemometrics and Intelligent Laboratory Systems 94, 166–174 (2008)

    Article  Google Scholar 

  14. Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using NSGA. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  15. Angira, R., Babu, B.V.: Optimization of Process Synthesis and Design Problems: A Modified Differential Evolution Approach. Chemical Engineering Science 61, 4707–4721 (2006)

    Article  Google Scholar 

  16. Babu, B.V., Chaurasia, A.S.: Optimization of Pyrolysis of Biomass Using Differential Evolution Approach. In: Proceeding of Fourth Asia- Pacific Conference on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS), Singapore, December 15-18 (2003)

    Google Scholar 

  17. Tsai, K.-Y., Wang, F.-S.: Evolutionary Optimization with Data Collocation for Reverse Engineering of Biological Networks. Bioinformatics 21(7), 1180–1188 (2005), doi:10.1093/bioinformatics

    Article  Google Scholar 

  18. Madavan, N.K.: Multiobjective optimization using a Pareto differential evolution approach. Paper presented at the Proceedings of the Congress on Evolutionary Computation, CEC 2002 (2002)

    Google Scholar 

  19. Adeyemo, J., Otieno, F.: Multi-Objective Differential Evolution Algorithm for Solving Engineering Problems. Journal of Applied Sciences 9(20), 3652–3661 (2009)

    Article  Google Scholar 

  20. Ali, M., Siarry, P., Pant, M.: An Efficient Differential Evolution Based Algorithm for Solving Multi-Objective Optimization Problems. European Journal of Operational Research 217(2), 404–416 (2012), http://dx.doi.org/10.1016/j.ejor.2011.09.025

    MATH  MathSciNet  Google Scholar 

  21. Olofintoye, O., Adeyemo, J., Otieno, F.: A Combined Pareto Differential Evolution Approach for Multi-objective Optimization. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. Studies in Computational Intelligence, vol. 500, pp. 213–231. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Adeyemo, J.A., Olofintoye, O.O., Otieno, F.A.O.: Performance evaluation of combined pareto multi-objective differential evolution on tuneable multi-objective test beds. International Jounal of Simulation Modeling, DAAAM Int. Vienna (2014)

    Google Scholar 

  23. Huang, V.L., Suganthan, P.N., Qin, A.K., Baskar, S.: Multiobjective Differential Evolution with External Archive and Harmonic Distance-Based Diversity Measure. School of Electrical and Electronic Engineering Nanyang, Technological University Technical Report (2005)

    Google Scholar 

  24. Enitan, A.M., Kumari, S., Swalaha, F.M., Adeyemo, J., Ramdhani, N., Bux, F.: Kinetic Modelling and Characterization of Microbial Community Present in a Full-Scale UASB Reactor Treating Brewery Effluent. Microbial Ecology 67, 358–368 (2014), doi:10.1007/s00248-013-0333-x

    Article  Google Scholar 

  25. Mezura-Montes, E., Reyes-Sierra, M., Coello, C.: Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 173–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution APractical Approach to Global Optimization, 1st edn. Springer, Heidelberg (2005)

    Google Scholar 

  27. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, 1st edn., vol. 289. John Wiley & Sons, Ltd., Chichester (2001)

    Google Scholar 

  28. Liu, P.-K., Wang, F.-S.: Inference of Biochemical Network Models in S-System Using Multiobjective Optimization Approach. Bioinformatics 24(8), 1085–1092 (2008), 1010.1093/bioinformatics/btn1075

    Google Scholar 

  29. Yee, A.K.Y., Ray, A.K., Rangiah, G.P.: Multi-objective Optimization of Industrial Styrene Reactor. Computers and Chemical Engineering 27, 111–130 (2003)

    Article  Google Scholar 

  30. Tarafder, A., Rangaiah, G.P., Ray, A.K.: Multi-Objective Optimization of an Industrial Styrene Monomer Manufacturing Process. Chemical Engineering Science 60(2), 347–363 (2005)

    Article  Google Scholar 

  31. Sareen, R., Gupta, S.K.: Multi-objective Optimization of an Industrial Semi Batch Nylon 6 Reactor. Journal of Applied Polymer Science 58(13), 2357–2371 (1995)

    Article  Google Scholar 

  32. Khosla, D.K., Gupta, S.K., Saraf, D.N.: Multi-objective Optimization of Fuel Oil Blending Using the Jumping Gene Adaptation of Genetic Algorithm. Fuel Process Technology 88, 51–63 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abimbola M. Enitan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Enitan, A.M., Adeyemo, J., Olofintoye, O.O., Bux, F., Swalaha, F.M. (2014). Multi-objective Optimization of Methane Producing UASB Reactor Using a Combined Pareto Multi–objective Differential Evolution Algorithm (CPMDE). In: Tantar, AA., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Advances in Intelligent Systems and Computing, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-319-07494-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07494-8_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07493-1

  • Online ISBN: 978-3-319-07494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics