Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 288))

Abstract

This paper presents a study on the application of evolutionary computation and artificial intelligence techniques to forecast inflows into the Vanderkloof reservoir, South Africa for the purpose of planning and management of available water resources. A differential evolution (DE)-trained neural network (DE-NN) was developed to simulate the interaction between reservoir inflow and its causal variables such as precipitation and evaporation. The performance of the DE-NN was evaluated using two performance metrics namely mean absolute percent error (MAPE) and coefficient of determination (R2). Results from this study demonstrated that the DE-NN model was able to substantially represent inflow patterns into the Vanderkloof reservoir, thereby indicating the efficacy of the DE algorithm in producing adequate generalization on unseen datasets. These results further showcase differential evolution algorithm as a potent, viable and promising algorithm for training neural network models for use in the field of water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jha, G.K.: Artificial neural networks and its applications, http://www.iasri.res.in/ebook/ebadat/5-Modeling%20and%20Forecasting%20Techniques%20in%20Agriculture/5-ANN_GKJHA_2007.pdf

  2. Coulibaly, P., Anctil, F., Bobee, B.: Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering 6(5), 367–376 (2001)

    Article  Google Scholar 

  3. Cigizoglu, H.K.: Application of generalized regression neural networks to intermittent flow forecasting and estimation. Journal of Hydrologic Engineering 10(4), 336–341 (2005)

    Article  Google Scholar 

  4. Toth, E.: Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrology and Earth System Sciences 13(9), 1555–1566 (2009)

    Article  Google Scholar 

  5. Yonaba, H., Anctil, F., Fortin, V.: Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. Journal of Hydrologic Engineering 15(4), 275–283 (2010)

    Article  Google Scholar 

  6. Adeyemo, J., Otieno, F.O.: Maximization of hydropower using strategies of differential evolution. OIDA International Journal of Sustainable Development 1(2), 33–37 (2010)

    Google Scholar 

  7. Department of Water Affairs (DWA) South Africa. Vanderkloof Dam, http://www.dwaf.gov.za/orange/mid_orange/vanderkl.aspx

  8. Kröse, B., van der Smagt, P.: An introduction to neural networks, 8th edn. The University of Amsterdam, Amsterdam (1996)

    Google Scholar 

  9. Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—part 1: concepts and methodology. Hydrology and Earth System Sciences 14(10), 1931–1941 (2010)

    Article  Google Scholar 

  10. Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15(1), 101–124 (2000)

    Article  Google Scholar 

  11. Coulibaly, P., Evora, N.: Comparison of neural network methods for infilling missing daily weather records. Journal of Hydrology 341(1), 27–41 (2007)

    Article  Google Scholar 

  12. Rumelhart, D., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructures of Cognition, pp. 318–362. The MIT Press, Cambridge (1986)

    Google Scholar 

  13. Kisi, Ö.: Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish J. Eng. Env. Sci. 29, 9–20 (2005)

    Google Scholar 

  14. Corzo, G., Solomatine, D.: Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrological Sciences Journal 52(3), 491–507 (2007)

    Article  Google Scholar 

  15. Kisi, O., Cigizoglu, H.K.: Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems 24(3), 211–231 (2007)

    Article  Google Scholar 

  16. Wang, W.-C., Chau, K.-W., Cheng, C.-T., Qiu, L.: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 374(3), 294–306 (2009)

    Article  Google Scholar 

  17. Ghanbarpour, M.R., Amiri, M., Zarei, M., Darvari, Z.: Comparison of stream flow predicted in a forest watershed using different modelling procedures: ARMA, ANN, SWRRB, and IHACRES models. International Journal of River Basin Management 10(3), 281–292 (2012)

    Article  Google Scholar 

  18. Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P.: Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software 25(8), 891–909 (2010)

    Article  Google Scholar 

  19. Hsu, K.L., Gupta, H.V., Gao, X., Sorooshian, S., Imam, B.: Self‐organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research 38(12), 38-1-38-17 (2002)

    Google Scholar 

  20. Dorado, J., RabuñAL, J.R., Pazos, A., Rivero, D., Santos, A., Puertas, J.: Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Applied Artificial Intelligence 17(4), 329–343 (2003)

    Article  Google Scholar 

  21. Parasuraman, K., Elshorbagy, A.: Cluster-based hydrologic prediction using genetic algorithm-trained neural networks. Journal of Hydrologic Engineering 12(1), 52–62 (2007)

    Article  Google Scholar 

  22. Kagoda, P.A., Ndiritu, J., Ntuli, C., Mwaka, B.: Application of radial basis function neural networks to short-term streamflow forecasting. Physics and Chemistry of the Earth, Parts A/B/C 35(13), 571–581 (2010)

    Article  Google Scholar 

  23. Piotrowski, A.P., Napiorkowski, J.J.: Optimizing neural networks for river flow forecasting–Evolutionary Computation methods versus the Levenberg–Marquardt approach. Journal of Hydrology 407(1), 12–27 (2011)

    Article  Google Scholar 

  24. Dhamge, N.R., Atmapoojya, S., Kadu, M.S.: Genetic Algorithm Driven ANN Model for Runoff Estimation. Procedia Technology 6, 501–508 (2012)

    Article  Google Scholar 

  25. Mathur, S.: Particle swarm optimization trained neural network for aquifer parameter estimation. KSCE Journal of Civil Engineering 16(3), 298–307 (2012)

    Article  MathSciNet  Google Scholar 

  26. Olofintoye, O., Adeyemo, J., Otieno, F.: A Combined Pareto Differential Evolution Approach for Multi-objective Optimization. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 213–231. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  27. Muleta, M.K., Nicklow, J.W.: Joint application of artificial neural networks and evolutionary algorithms to watershed management. Water Resources Management 18(5), 459–482 (2004)

    Article  Google Scholar 

  28. Chen, Y.-H., Chang, F.-J.: Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology 367(1), 125–137 (2009)

    Article  Google Scholar 

  29. Mihalache, C.R., Leon, F.: Functional approximation using neuro-genetic hybrid systems. Buletinul Institutului Politehnic Din Iasi Tomul LV(LIX), 87–102 (2009)

    Google Scholar 

  30. Subudhi, B., Jena, D.: An improved differential evolution trained neural network scheme for nonlinear system identification. International Journal of Automation and Computing 6(2), 137–144 (2009)

    Article  Google Scholar 

  31. Kişi, Ö.: River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology 389(1), 227–235 (2010)

    Google Scholar 

  32. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chauhan, N., Ravi, V., Karthik Chandra, D.: Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks. Expert Systems with Applications 36(4), 7659–7665 (2009)

    Article  Google Scholar 

  34. Abdul-Kader, H.: Neural Networks Training Based on Differential Evolution Algorithm Compared with Other Architectures for Weather Forecasting34. IJCSNS 9(3), 92–99 (2009)

    Google Scholar 

  35. Qian, B., Wang, L., Hu, R., Huang, D., Wang, X.: A DE-based approach to no-wait flow-shop scheduling. Computers & Industrial Engineering 57(3), 787–805 (2009)

    Article  Google Scholar 

  36. Adeyemo, J., Otieno, F.: Differential evolution algorithm for solving multi-objective crop planning model. Agricultural Water Management 97(6), 848–856 (2010)

    Article  Google Scholar 

  37. Pal, S., Qu, B., Das, S., Suganthan, P.: Optimal synthesis of linear antenna arrays with multi-objective differential evolution. Progress in Electromagnetics Research, PIER B 21, 87–111 (2010)

    Google Scholar 

  38. Slowik, A., Bialko, M.: Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions, pp. 60–65. IEEE Xplore (2008)

    Google Scholar 

  39. Bowden, G.J., Dandy, G.C., Maier, H.R.: Input determination for neural network models in water resources applications. Part 1—background and methodology. Journal of Hydrology 301(1), 75–92 (2005)

    Google Scholar 

  40. Sudheer, K., Gosain, A., Ramasastri, K.: A data‐driven algorithm for constructing artificial neural network rainfall‐runoff models. Hydrological Processes 16(6), 1325–1330 (2002)

    Article  Google Scholar 

  41. Aqil, M., Kita, I., Yano, A., Nishiyama, S.: A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of Hydrology 337(1), 22–34 (2007)

    Article  Google Scholar 

  42. Price, K. and Storn, R.: Differential Evolution (DE) for Continuous Function Approximation, http://www1.icsi.berkeley.edu/~storn/code.html.

  43. Qu, J., Cao, L., Zhou, J.: Differential evolution-optimized general regression neural network and application to forecasting water demand in Yellow River Basin. In: 2010 2nd International Conference on Information Science and Engineering (ICISE), pp. 1129–1132. IEEE Xplore (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwaseun Oyebode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oyebode, O., Adeyemo, J. (2014). Reservoir Inflow Forecasting Using Differential Evolution Trained Neural Networks. In: Tantar, AA., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Advances in Intelligent Systems and Computing, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-319-07494-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07494-8_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07493-1

  • Online ISBN: 978-3-319-07494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics