Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 452 Accesses

Abstract

The introduction describes the significance of ultracold atomic systems from both an experimental and theoretical perspective, while introducing many-body tunneling in open systems. Further, basic theoretical concepts used in the field of ultracold bosons are described. The structure of the thesis is then explained.

Begin at the beginning,” the King said, gravely, “and go on till you come to an end; then stop.”

Lewis Carroll, Alice in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, Quantentheorie des einatomigen idealen Gases. II. Sitzungsber. Preuss. Akad. Wiss. Bericht 1, 3 (1925)

    Google Scholar 

  2. S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)

    Article  ADS  MATH  Google Scholar 

  3. A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungsber. Preuss. Akad. Wiss. Bericht 22, 261 (1924)

    Google Scholar 

  4. T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13(1), 68–69 (1975)

    Article  ADS  Google Scholar 

  5. N.R. Newbury, C.J. Myatt, E.A. Cornell, C.E. Wieman, Gravitational Sisyphus Cooling of \({}^{87}{\rm {Rb}}\) in a Magnetic Trap. Phys. Rev. Lett. 74, 2196–2199 (1995)

    Google Scholar 

  6. J.I. Cirac, R. Blatt, P. Zoller W.D. Phillips, Laser cooling of trapped ions in a standing wave. Phys. Rev. A 46, 2668–2681 (1992)

    Google Scholar 

  7. H.J. Metcalf, P. Van Der Straten, Laser Cooling and Trapping (Springer, New York Inc., 1999)

    Google Scholar 

  8. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose–Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Google Scholar 

  9. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wiemann, E.A. Cornell, Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198 (1995)

    Google Scholar 

  10. C.C. Bradley, C.A. Sackett, J.J. Tollet, R.G. Hulet, Evidence of Bose–Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 75, 1687 (1995)

    Google Scholar 

  11. A. Görlitz et al., Realization of Bose–Einstein Condensates in Lower Dimensions. Phys. Rev. Lett. 87, 130402 (2001)

    Google Scholar 

  12. F. Schreck et al., Quasipure Bose–Einstein Condensate Immersed in a Fermi Sea. Phys. Rev. Lett. 87, 080403 (2001)

    Google Scholar 

  13. M. Greiner et al., Exploring Phase Coherence in a 2D Lattice of Bose–Einstein Condensates. Phys. Rev. Lett. 87, 160405 (2001)

    Google Scholar 

  14. K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 11, 043030 (2009)

    Google Scholar 

  15. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  16. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  17. O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Realization of a Sonic Black Hole Analog in a Bose–Einstein Condensate. Phys. Rev. Lett. 105, 240401 (2010)

    Google Scholar 

  18. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose–Einstein Condensation of Chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Google Scholar 

  19. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Strongly Dipolar Bose–Einstein Condensate of Dysprosium. Phys. Rev. Lett. 107, 190401 (2011)

    Google Scholar 

  20. J. Dunningham, K. Burnett, W.D. Phillips, Bose–Einstein condensates and precision measurements. Phil. Trans. R. Soc. A 363, 2165–2175 (2005)

    Google Scholar 

  21. O. Morsch, M.K. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006)

    Google Scholar 

  22. T. Calarco, U. Dorner, P.S. Julienne, C.J. Williams, P. Zoller, Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004)

    Google Scholar 

  23. D.V. Freilich, D.M. Bianchi, A.M. Kaufman, T.K. Langin, D.S. Hall, Real-time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose–Einstein Condensate. Science 329(5996), 1182–1185 (2010)

    Google Scholar 

  24. W. Ketterle, Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Google Scholar 

  25. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  26. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  27. O. Penrose, L. Onsager, Bose–Einstein Condensation and Liquid Helium. Phys. Rev. 104, 576–584 (1956)

    Google Scholar 

  28. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Exact Quantum Dynamics of a Bosonic Josephson Junction. Phys. Rev. Lett. 103, 220601 (2009)

    Google Scholar 

  29. L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Fragmented Metastable States Exist in an Attractive Bose–Einstein Condensate for Atom Numbers Well Above the Critical Number of the Gross–Pitaevskii Theory. Phys. Rev. Lett. 100, 040402 (2008)

    Google Scholar 

  30. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Role of Excited States in the Splitting of a Trapped Interacting Bose–Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 99, 030402 (2007)

    Google Scholar 

  31. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 95, 030405 (2005)

    Google Scholar 

  32. O.E. Alon, L.S. Cederbaum, Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Phys. Rev. Lett. 95, 140402 (2005)

    Google Scholar 

  33. P. Bader, U.R. Fischer, Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap. Phys. Rev. Lett. 103, 060402 (2009)

    Google Scholar 

  34. R.W. Spekkens, J.E. Sipe, Spatial fragmentation of a Bose–Einstein condensate in a double-well potential. Phys. Rev. A 59, 3868–3877 (1999)

    Google Scholar 

  35. E.J. Mueller, T.-L. Ho, M. Ueda, G. Baym, Fragmentation of Bose–Einstein condensates. Phys. Rev. A 74, 033612 (2006)

    Google Scholar 

  36. C. Weiss, Y. Castin, Creation and Detection of a Mesoscopic Gas in a Nonlocal Quantum Superposition. Phys. Rev. Lett. 102, 010403 (2009)

    Google Scholar 

  37. G. Gamow, Zur Quantentheorie des Atomkernes. Z. f. Phys. 51(3–4), 204–212 (1928)

    Article  ADS  MATH  Google Scholar 

  38. H.A. Kramers, Wellenmechanik und halbzählige Quantisierung. Zeitschr. f. Physik A 39 (10–11), 828–840 (1926)

    Google Scholar 

  39. N. Takigawa, A.B. Balantekin, Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77–100 (1998)

    Google Scholar 

  40. B.S. Bhandari, Resonant tunneling and the bimodal symmetric fission of \(^{258}\)Fm. Phys. Rev. Lett. 66, 1034–1037 (1991)

    Article  ADS  Google Scholar 

  41. J. Keller, J. Weiner, Direct measurement of the potential-barrier height in the B\(^1\Pi _u\) state of the sodium dimer. Phys. Rev. A 29, 2943–2945 (1984)

    Article  ADS  Google Scholar 

  42. M. Vatasescu et al., Multichannel tunneling in the Cs\(_2\)0\(_g^-\) photoassociation spectrum. Phys. Rev. A 61, 044701 (2000)

    Article  ADS  Google Scholar 

  43. A.U.J. Lode, K. Sakmann, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)

    Article  ADS  Google Scholar 

  44. P. Kramer, M. Saraceno, Geometry of the Time-Dependent Variational Principle (Springer, Heidelberg, 1981)

    Book  MATH  Google Scholar 

  45. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: Many-Body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

    Google Scholar 

  46. E.P. Gross, Structure of a quantized vortex in boson systems. II Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  47. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  48. L.S. Cederbaum, A.I. Streltsov, Best mean-field for condensates. Phys. Lett. A 318, 564–569 (2003)

    Article  ADS  MATH  Google Scholar 

  49. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Time-dependent multiorbital mean-field for fragmented Bose–Einsten condensates. Phys. Lett. A 362, 453–459 (2007)

    Google Scholar 

  50. I. Březinová, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cedrbaum, J. Burgdörfer, Wave chaos as signature for depletion of a Bose–Einstein condensate. Phys. Rev. A 86, 013630 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel U. J. Lode .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lode, A.U.J. (2015). Introduction. In: Tunneling Dynamics in Open Ultracold Bosonic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07085-8_1

Download citation

Publish with us

Policies and ethics