Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1002 Accesses

Abstract

Engineering new electronic and structural phases by combining complex materials into heterostructures is a task taken on with widespread enthusiasm around the world. Resonant X-ray diffraction was used to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO\(_{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that the channel \(I_{\sigma \sigma }\) is not active in magnetic scattering.

  2. 2.

    These results also rule out the phase transition of STO [38] as driving the transition.

  3. 3.

    From the expression \(Corr.~Length=\frac{a (nm)}{\pi \times FWHM}.\)

References

  1. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Systematic study of insulator-metal transitions in perovskites RNiO\(_{3}\) (R \(=\) Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45(14), 8209–8212 (1992)

    Google Scholar 

  2. M.L. Medarde, Structural, magnetic and electronic properties of perovskites RNiO\(_3\) (\(R = \text{ rare } \text{ earth }\)). J. Phys. Condens. Matter 9(8), 1679 (1997)

    Google Scholar 

  3. G. Catalan, Progress in perovskite nickelate research. Phase Transitions Multinational J. 81(7), 729–749 (2008)

    Google Scholar 

  4. J.-S. Zhou, J.B. Goodenough, Chemical bonding and electronic structure of RNiO\(_{3}\;(R={\rm {rare}}\) earth). Phys. Rev. B 69, 153105 (2004)

    Google Scholar 

  5. J.L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, J.B. Torrance, Neutron-diffraction study of R\(NiO_{3}\) (\(\rm {R}=\rm {La}\), Pr, Nd, Sm): electronically induced structural changes across the metal-insulator transition. Phys. Rev. B 46(8), 4414–4425 (1992)

    Google Scholar 

  6. J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde et al., Neutron-diffraction study of the magnetic and orbital ordering in \(^{154}\)SmNiO\(_{3}\) and \(^{153}\)EuNiO\(_{3}\). Phys. Rev. B 57(1), 456–464 (1998)

    Google Scholar 

  7. J.L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, Neutron-diffraction study of the magnetic ordering in the insulating regime of the perovskites R\({\rm {NiO}}_{3}\) (\(\rm {R} = \rm {Pr}\) and Nd). Phys. Rev. B 50, 978–992 (1994)

    Google Scholar 

  8. J.L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, Sudden appearance of an unusual spin density wave at the metal-insulator transition in the perovskites RNiO\(_3\) (R \(=\) Pr, Nd). Europhys. Lett. (EPL) 20(3), 241 (1992)

    Google Scholar 

  9. J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, J.L. García-Muñoz, M.T. Fernández-Díaz, Room-temperature monoclinic distortion due to charge disproportionation in RNiO\(_3\) perovskites. Phys. Rev. B 61, 1756–1763 (2000)

    Google Scholar 

  10. J.A. Alonso, J.L. García-Muñoz, M.T. Fernandez-Díaz et al., Charge disproportionation in RNiO3 perovskites: simultaneous metal-insulator and structural transition in YNiO\(_3\). Phys. Rev. Lett. 82, 3871–3874 (1999)

    Google Scholar 

  11. U. Staub, G.I. Meijer, F. Fauth et al., Direct observation of charge order in an epitaxial NdNiO\(_{3}\) film. Phys. Rev. Lett. 88(12), 126402 (2002). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.126402

  12. Y. Murakami, J.P. Hill, D. Gibbs et al., Resonant X-ray scattering from orbital ordering in LaMnO\(_3\). Phys. Rev. Lett. 81(3), 582–585 (1998)

    Google Scholar 

  13. T.A.W. Beale, G. Beutier, S.R. Bland et al., Rexs contribution to electronic ordering investigation in solids. Eur. Phys. J. Spec. Topics 208(1), 89–98 (2012)

    Google Scholar 

  14. J. Kokubun, V.E. Dmitrienko, Anisotropic resonant x-ray scattering: beauty of forbidden reflections. Eur. Phys. J. Spec. Topics 208, 39–52 (2012)

    Google Scholar 

  15. M.T. Fernández-Díaz, J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, J.L. García-Muñoz, Magnetic structure of the HoNiO\(_{3}\) perovskite. Phys. Rev. B 64, 144417 (2001)

    Google Scholar 

  16. V. Scagnoli, U. Staub, A.M. Mulders et al., Role of magnetic and orbital ordering at the metal-insulator transition in \({\rm {NdNiO}}_{3}\). Phys. Rev. B 73, 100409 (2006)

    Google Scholar 

  17. V. Scagnoli, U. Staub, Y. Bodenthin et al., Induced noncollinear magnetic order of \({\rm {Nd}}^{3+}\) in \({\rm {Nd}}{\rm {Ni}}{\rm {O}}_{3}\) observed by resonant soft x-ray diffraction. Phys. Rev. B 77, 115138 (2008). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.77.115138

  18. I. Vobornik, L. Perfetti, M. Zacchigna et al., Electronic-structure evolution through the metal-insulator transition in \(R{\rm {NiO}}_{3}\). Phys. Rev. B 60, R8426–R8429 (1999)

    Google Scholar 

  19. B. Lau, A.J. Millis, Theory of the magnetic and metal-insulator transitions in \(R{\rm {NiO}}_{3}\) bulk and layered structures. Phys. Rev. Lett. 110, 126404 (2013)

    Google Scholar 

  20. S. Dong, E. Dagotto, Quantum confinement induced magnetism in LaNiO\(_{3}\)-LaMnO\(_{3}\) superlattices. Phys. Rev. B 87, 195116 (2013)

    Google Scholar 

  21. D. Puggioni, A. Filippetti, V. Fiorentini, Ordering and multiple phase transitions in ultrathin nickelate superlattices. Phys. Rev. B 86, 195132 (2012)

    Google Scholar 

  22. S.B. Lee, R. Chen, L. Balents, Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106, 016405 (2011). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.016405

  23. S.B. Lee, R. Chen, L. Balents, Metal-insulator transition in a two-band model for the perovskite nickelates. Phys. Rev. B 84, 165119 (2011)

    Google Scholar 

  24. P. Hansmann, X. Yang, A. Toschi et al., Turning a nickelate fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103(1), 016401 (2009)

    Google Scholar 

  25. P. Hansmann, A. Toschi, X. Yang, O.K. Andersen, K. Held, Electronic structure of nickelates: from two-dimensional heterostructures to three-dimensional bulk materials. Phys. Rev. B 82, 235123 (2010)

    Google Scholar 

  26. M.J. Han, C.A. Marianetti, A.J. Millis, Chemical control of orbital polarization in artificially structured transition-metal oxides: La\(_{2}\)NiXO\(_{6}\) \((X=B, Al, Ga, In)\) from first principles. Phys. Rev. B 82(13), 134408 (2010)

    Google Scholar 

  27. M.J. Han, X. Wang, C.A. Marianetti,A.J. Millis, Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107, 206804 (2011)

    Google Scholar 

  28. E. Benckiser, M.W. Haverkort, S. Brück et al., Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011)

    Google Scholar 

  29. J. Chakhalian, J.M. Rondinelli, J. Liu et al., Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Phys. Rev. Lett. 107, 116805 (2011)

    Google Scholar 

  30. J.W. Freeland, J. Liu, M. Kareev et al., Orbital control in strained ultra-thin LaNiO\(_3\)/LaAlO\(_3\) superlattices. Europhys. Lett. (EPL) 96(5), 57004 (2011)

    Google Scholar 

  31. M. Wu, E. Benckiser, M.W. Haverkort et al., Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys. Rev. B 88, 125124 (2013)

    Google Scholar 

  32. B.T. Thole, G. van der Laan, Sum rules for magnetic dichroism in rare earth 4 f photoemission. Phys. Rev. Lett. 70, 2499–2502 (1993)

    Google Scholar 

  33. G. van der Laan, Sum rules and fundamental spectra of magnetic X-ray dichroism in crystal field symmetry. J. Phys. Soc. Jpn. 63, 2393–2400 (1994)

    Google Scholar 

  34. M. Wu, Title to be decided. Ph.D. thesis, Universität Stuttgart (2014)

    Google Scholar 

  35. A.V. Boris, Y. Matiks, E. Benckiser et al., Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332(6032), 937–940 (2011)

    Google Scholar 

  36. J. Liu, S. Okamoto, M. van Veenendaal et al. Quantum confinement of mott electrons in ultrathin lanio\(3\)/laalo\(3\) superlattices. Phys. Rev. B 83(16), 161102 (2011)

    Google Scholar 

  37. R. Scherwitzl, S. Gariglio, M. Gabay et al., Metal-insulator transition in ultrathin LaNiO\(_3\) films. Phys. Rev. Lett. 106(24), 246403 (2011)

    Google Scholar 

  38. H. Fujishita, Y. Shiozaki, E. Sawaguchi, X-ray crystal structure analysis of low temperature phase of SrTiO\(_{3}\). J. Phys. Soc. Jpn 46(2), 581–586 (1979)

    Google Scholar 

  39. T. Prokscha, E. Morenzoni, K. Deiters et al., The new \(\mu \)E4 beam at PSI: a hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods Phys. Res. A 595, 317 (2008)

    Google Scholar 

  40. M. Gibert, P. Zubko, R. Scherwitzl, J. Iniguez, and J.M. Triscone. Exchange bias in LaNiO\({_3}\)-\({\rm {LaMnO}}_3\) superlattices. Nat Mater. 11, 195–198 (2012)

    Google Scholar 

  41. J. Hoffman, I.C. Tung, B. Nelson-Cheeseman et al., Charge transfer and interfacial magnetism in (LaNiO\(_3\))\(_n\)/(LaMnO\(_3\))\(_2\) superlattices (2013). archiv:1301.7295v1

    Google Scholar 

  42. A. Frano, X-ray scattering investigations in transition-metal-oxide heterostructures. Master’s thesis, Universität Stuttgart (2010)

    Google Scholar 

  43. A.M. Glazer, Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A 31(6), 756–762 (1975)

    Google Scholar 

  44. U. Gebhardt, N.V. Kasper, A. Vigliante et al., Formation and thickness evolution of periodic twin domains in manganite films grown on SrTiO\(_{3} (001)\) substrates. Phys. Rev. Lett. 98(9), 096101 (2007)

    Google Scholar 

  45. U. Gebhardt, Strukturelle relaxation von epitaktischen, dünnen La/Sr-Manganitfilmen in Abhängigkeit von der Schichtdicke. Ph.D. thesis, Universität Stuttgart (2006)

    Google Scholar 

  46. Y. Lu, Structural and electronic properties of perovskite rare-earth nickelate superlattices. Master’s thesis, Universität Stuttgart (2012)

    Google Scholar 

  47. S.J. May, J.-W. Kim, J.M. Rondinelli et al., Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82(1), 014110 (2010)

    Google Scholar 

  48. S.J. May, C.R. Smith, J.-W. Kim et al., Control of octahedral rotations in (LaNiO\(_{3}\))\(_{n}\)/(SrMnO\(_{3}\))\(_{m}\) superlattices. Phys. Rev. B 83, 153411 (2011)

    Google Scholar 

  49. H. Heinke, Relaxation and mosaicity profiles in epitaxial layers studied by high resolution X-ray diffraction. J. Cryst. Growth 135, 41–52 (1994)

    Google Scholar 

  50. R.C. Farrow, M.T. Asom, K.A. Jackson, L.C. Kimerling, SEM study of phase-transformation in alpha-Sn thin films. Inst. Phys. Conf. Ser. 100, 259–264 (1989)

    Google Scholar 

  51. L.X. Cao, T.L. Lee, F. Renner et al., Strain release and twin structure in GdBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) film on (001) SrTiO\(_3\) and NdGaO\(_3\). Phys. Rev. B 65, 113402 (2002)

    Google Scholar 

  52. Y.-C. Liang, H.-Y. Lee, H.-J. Liu, T.-B. Wu, In situ characterization of lattice relaxation of the BaTiO\(_3\)/LaNiO\(_3\) superlattices epitaxially grown on SrTiO\(_3\) substrates. J. Cryst. Growth 276, 534–540 (2005)

    Google Scholar 

  53. A. Yamamoto, M. Onoda, E. Takayama-Muromachi et al., Rietveld analysis of the modulated structure in the superconducting oxide \({\rm {Bi}}_{2}({\text{ Sr, } \text{ Ca }}{)}_{3}{\rm {Cu}}_{2}{\rm {O}}_{8+}x\). Phys. Rev. B 42, 4228–4239 (1990)

    Google Scholar 

  54. H. Leligny, D. Grebille, O. Perez et al., A five-dimensional structural investigation of the misfit layer compound [Bi\(_{0.87}\)SrO\(_{2}\)]\(_{2}[\)CoO2]\(_{1.82}\). Acta Crystallogr. Sect. B: Struct. Sci. 56, 173–182 (2000)

    Google Scholar 

  55. P.M. DeWolff, T. Janssen, A. Janner, The superspace groups for incommensurate crystal-structures with a one-dimensional modulation. Acta Crystallogr. Sect. B 37, 625–636 (1981)

    Google Scholar 

  56. V.Y. Butko, G. Logvenov, N. Bozovic, Z. Radovic, I. Bozovic. Madelung strain in cuprate superconductors—a route to enhancement of the critical temperature. Adv. Mater. 21(36), 3644 (2009)

    Google Scholar 

  57. T.S. Santos, B.J. Kirby, S. Kumar et al., Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. Phys. Rev. Lett. 107, 167202 (2011)

    Google Scholar 

  58. R.J. Birgeneau, H.J. Guggenheim, G. Shirane, Neutron scattering investigation of phase transitions and magnetic correlations in the two-dimensional antiferromagnets \({\rm {K}}_{2}Ni{\rm {F}}_{4}, {\rm {Rb}}_{2}{\rm {Mn}}{\rm {F}}_{4}, {\rm {Rb}}_{2}{\rm {Fe}}{\rm {F}}_{4}\). Phys. Rev. B 1, 2211–2230 (1970)

    Google Scholar 

  59. D.G. Schlom, M. Bernhagen, R. Uecker, X. Ke, C. Adamo, P. Schiffer, Low temperature magnetism in the perovskite substrate DyScO\(_3\). Appl. Phys. Lett. 94, 152503 (2009)

    Google Scholar 

  60. G. Catalan, R.M. Bowman, J.M. Gregg, Metal-insulator transitions in \({\rm {ndnio}}_{3}\) thin films. Phys. Rev. B 62, 7892–7900 (2000)

    Google Scholar 

  61. J. Liu, M. Kareev, B. Gray, et al., Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO\(_3\). Appl. Phys. Lett. 96(23), 233110 (2010)

    Google Scholar 

  62. S. Baniya, X-ray diffraction from PrNiO\(_3\) thin films. Master’s thesis, Universität Stuttgart (2012)

    Google Scholar 

  63. E. Fawcett, Spin density wave antiferromagnetism in chromium alloys. Rev. Mod. Phys. 66, 25–127 (1994)

    Google Scholar 

  64. G. Grüner, Density Waves in Solids (Addison-Wesley, Reading, 1994)

    Google Scholar 

  65. V. Scagnoli, U. Staub, M. Janousch, et al. Charge disproportionation and search for orbital ordering in NdNiO\(_3\) by use of resonant x-ray diffraction. Phys. Rev. B 72(15), 155111 ( 2005)

    Google Scholar 

  66. A.H. MacDonald, M. Tsoi, Antiferromagnetic metal spintronics. Philos. Trans. R. Soc. Lond., Ser. A 369(1948), 3098–3114 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Frano .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frano, A. (2014). The Nickelates: A Spin Density Wave. In: Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07070-4_3

Download citation

Publish with us

Policies and ethics