Skip to main content

Dynamical Systems

  • Chapter
  • First Online:
Deterministic Nonlinear Systems

Abstract

The temporal and spatial behavior of a system can be predicted if initial conditions are known. This task is one of the most important problems in the natural sciences. It amounts to finding a law that enables us to define the future state of the system at a time t > t 0 when given some information on the system at the initial time t 0. Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe either the temporal or the spatio-temporal evolution of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The commonly used term ‘discrete map’ is not entirely appropriate since a map is usually given on a continuous set of states and only time moments form a discrete set.

References

  1. Afraimovich, V.S., Arnold, V.I., Ilyashenko, Yu.S., Shilnikov, L.P.: Dynamical Systems V. Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1989)

    Google Scholar 

  2. Afraimovich, V.S., Shilnikov, L.P.: Strange attractors and quasiattractors. In: Barenblatt, G.I., Iooss, G., Joseph, D.D. (eds.) Nonlinear Dynamics and Turbulence, p. 1. Pitman, Boston (1983)

    Google Scholar 

  3. Andronov, A.A., Vitt, E.A., Khaikin, S.E.: Theory of Oscillations. Pergamon, Oxford (1966)

    Google Scholar 

  4. Anishchenko, V.S.: Dynamical Chaos – Models and Experiments. World Scientific, Singapore (1995)

    Google Scholar 

  5. Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Springer, Berlin (2002)

    Google Scholar 

  6. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Heidelberg (1974)

    Google Scholar 

  7. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)

    Google Scholar 

  8. Berge, P., Pomeau, I., Vidal, C.G.: Order Within Chaos. Wiley, New York (1984)

    Google Scholar 

  9. Binney, J.: The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press, Oxford (1992)/World Scientific, Singapore (2010)

    Google Scholar 

  10. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathamatics, vol. 470. Springer, Berlin (1975)

    Google Scholar 

  11. Bohr, T., Jensen, M.H., Paladin, G., Vulpiani, A.: Dynamical System Approach to Turbulence. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  12. Chen, G., Dong, X.: From Chaos to Order: Perspectives, Methodologies, and Applications. World Scientific, Singapore (1998)

    Google Scholar 

  13. Collins, J.: Renormalization: An Introduction to Renormalization. Cambridge University Press, Cambridge (1984/1986)

    Google Scholar 

  14. Crownover, R.M.: Introduction to Fractals and Chaos. Jones and Bartlett, London (1995)

    Google Scholar 

  15. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview, Boulder (1989/2003)

    Google Scholar 

  16. Drazin, P.G.: Nonlinear Systems. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  17. Eckmann, J.-P., Collet, P.: Iterated Maps as Dynamical Systems. Birkhauser, Basel (1980)

    Google Scholar 

  18. Glendinning, P.: Stability, Instability, and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  19. Grebogi, C., Yorke, J.A. (eds.): The Impact of Chaos on Science and Society. United Nations University Press, Tokyo (1997)

    Google Scholar 

  20. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  21. Haken, H.: Synergetics: Introduction and Advanced Topics. Springer, Heidelberg (2004)

    Google Scholar 

  22. Hilborn, R.C.: Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2002/2004)

    Google Scholar 

  23. Jackson, E.A.: Perspectives of Nonlinear Dynamics, vols. 1 and 2. Cambridge University Press, Cambridge (1989/1990)

    Google Scholar 

  24. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  25. Kapitaniak, T.: Chaos for Engineers: Theory, Applications, and Control. Springer, New York (1998)

    Google Scholar 

  26. Kapitaniak, T.: Chaotic Oscillators: Theory and Applications. World Scientific, Singapore (1992)

    Google Scholar 

  27. Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)

    Google Scholar 

  28. Lichtenberg, A., Lieberman, M.A.: Regular and Stochastic Motion. Springer, New York (1983)

    Google Scholar 

  29. Marek, M., Schreiber, I.: Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge University Press, Cambridge (1991/1995)

    Google Scholar 

  30. Marsden, L.E., McCraken, V.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)

    Google Scholar 

  31. Moon, F.C.M.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, New York (1992)

    Google Scholar 

  32. Moon, F.C.M.: Chaotic Vibration: An Introduction for Applied Scientists and Engineers. Wiley, New York (2004)

    Google Scholar 

  33. Mosekilde, E., Maistrenko, U., Postnov, D.: Chaotic Synchronization: Applications to Living Systems. World Scientific, Singapore (2002)

    Google Scholar 

  34. Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  35. Ogorzalek, M.J.: Chaos and Complexity in Nonlinear Electronic Circuits. World Scientific, Singapore (1997)

    Google Scholar 

  36. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993/2002)

    Google Scholar 

  37. Pesin, Ya.B.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago (1997)

    Google Scholar 

  38. Schroeder, M.: Fractals, Chaos, Power Laws. Freeman, New York (1991)

    Google Scholar 

  39. Schuster, H.G.: Deterministic Chaos. Physik-Verlag, Weinheim (1988)

    Google Scholar 

  40. Seydel, R.: Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos. Springer, New York (1994/2009)

    Google Scholar 

  41. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore (2001)

    Google Scholar 

  42. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)

    Google Scholar 

  43. Zaslavsky, G.M.: Chaos in Dynamical Systems. Harwood, New York (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I. (2014). Dynamical Systems. In: Deterministic Nonlinear Systems. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-06871-8_1

Download citation

Publish with us

Policies and ethics