Skip to main content

The Second Part of Hilbert’s Sixteenth Problem

  • Chapter
  • First Online:
Dynamical Systems with Applications using MATLAB®
  • 11k Accesses

Abstract

Aims and Objectives

• To describe the second part of Hilbert’s sixteenth problem.

• To review the main results on the number of limit cycles of planar polynomial systems.

• To consider the flow at infinity after Poincaré compactification.

• To review the main results on the number of limit cycles of Liénard systems.

• To prove two theorems concerning limit cycles of certain Liénard systems.

On completion of this chapter the reader should be able to

• state the second part of Hilbert’s sixteenth problem;

• describe the main results for this problem;

• compactify the plane and construct a global phase portrait which shows the behavior at infinity for some simple systems;

• compare local and global results;

• prove that certain systems have a unique limit cycle;

• prove that a limit cycle has a certain shape for a large parameter value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type. Am. Math. Soc. Trans. 5, 396–414 (1962)

    Google Scholar 

  2. T.R. Blows, N.G. Lloyd, The number of small-amplitude limit cycles of Liénard equations. Math. Proc. Camb. Philos. Soc. 95, 359–366 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. T.R. Blows, C. Rousseau, Bifurcation at infinity in polynomial vector fields. J. Differ. Equ. 104, 215–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. L.A. Cherkas, Conditions for a Liénard equation to have a center. Differentsial’nye Uravneniya 12, 201–206 (1976)

    Google Scholar 

  5. C.J. Christopher, N.G. Lloyd, Polynomial systems: A lower bound for the Hilbert numbers. Proc. Roy. Soc. Lond. A 450, 219–224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. C.J. Christopher, N.G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems. Nonlinear Diff. Equ. Appl. 3, 183–190 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. C.J. Christopher, S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces. Nonlinearity 12, 1099–1112 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. W.A. Coppel, Some quadratic systems with at most one limit cycle. Dynamics Reported, New York 2, 61–68 (1988)

    Article  MathSciNet  Google Scholar 

  9. F. Dumortier, L. Chengzhi, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations. Nonlinearity 9, 1489–1500 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Dumortier, L. Chengzhi, Quadratic Liénard equations with quadratic damping. J. Differ. Equ. 139, 41–59 (1997)

    Article  MATH  Google Scholar 

  11. F. Dumortier, D. Panazzolo, R. Roussarie, More limit cycles than expected in Liénard equations. Proc. Am. Math. Soc. 135(6), 1895–1904 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Ecalle, J. Martinet, J. Moussu, J.P. Ramis, Non-accumulation des cycles-limites I. C.R. Acad. Sci. Paris Sér. I Math. 304, 375–377 (1987)

    Google Scholar 

  13. H. Giacomini, S. Neukirch, Improving a method for the study of limit cycles of the Liénard equation. Phys. Rev. E 57, 6573–6576 (1998)

    Article  MathSciNet  Google Scholar 

  14. M. Han, J. Li, Lower bounds for the Hilbert number of polynomial systems. J. Differ. Equ. 252(4), 3278–3304 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Han, V.G. Romanovski, On the number of limit cycles of polynomial Lienard systems. Nonlinear Anal. Real World Appl. 14(3), 1655–1668 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Ilyashenko, Finiteness Theorems for Limit Cycles. Translations of Mathematical Monographs 94 (American Mathematical Society, Providence 1991)

    Google Scholar 

  17. Y. Ilyashenko, Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. 39(3), 301–354 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Jiang, H. Maoan, Y. Pei, S. Lynch, Small-amplitude limit cycles of two types of symmetric Liénard systems. Int. J. Bifurcat. Chaos 17(6), 2169–2174 (2007)

    Article  MATH  Google Scholar 

  19. J. Li, Hilbert’s sixteenth problem and bifurcations of planar polynomial vector fields. Int. J. Bifurcat. Chaos 13, 47–106 (2003)

    Article  MATH  Google Scholar 

  20. J. Li, L. Chunfu, Global bifurcation of planar disturbed Hamiltonian systems and distributions of limit cycles of cubic systems. Acta. Math. Sinica 28, 509–521 (1985)

    MATH  MathSciNet  Google Scholar 

  21. A. Lins, W. de Melo, C. Pugh, On Liénards equation with linear damping, in Lecture Notes in Mathematics, vol. 597, ed. by J. Palis, M. do Carno (Springer, Berlin, 1977), pp. 335–357

    Google Scholar 

  22. A. Marasco, C. Tenneriello, Periodic solutions of a 2D-autonomous system using Mathematica. Math. Comput. Model. 45(5-6), 681–693 (2007)

    Google Scholar 

  23. H.N. Moreira, Liénard-type equations and the epidemiology of maleria. Ecol. Model. 60, 139–150 (1992)

    Article  Google Scholar 

  24. Y. Pei, H. Maoan, Twelve limit cycles in a cubic case of the 16’th Hilbert problem. Int. J. Bifurcat. Chaos 15, 2191–2205 (2005)

    Article  Google Scholar 

  25. G.S. Rychkov, The maximum number of limit cycles of the system \(\dot{x} = y - a_{0}x - a_{1}x^{3} - a_{2}x^{5},\dot{y} = -x\) is two. Differentsial’nye Uravneniya 11, 380–391 (1973)

    Google Scholar 

  26. S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sinica A 23, 153–158 (1980)

    MATH  Google Scholar 

  27. K.S. Sibirskii, The number of limit cycles in the neighbourhood of a critical point. Differ. Equ. 1, 36–47 (1965)

    Google Scholar 

  28. Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential Equations. Translation of Mathematical Monographs 102 (American Mathematical Society, Providence, 1992)

    Google Scholar 

  29. H. Zoladek, Eleven small limit cycles in a cubic vector field. Nonlinearity 8, 843–860 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lynch, S. (2014). The Second Part of Hilbert’s Sixteenth Problem. In: Dynamical Systems with Applications using MATLAB®. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-06820-6_17

Download citation

Publish with us

Policies and ethics