Skip to main content

Heat Capacity of 1D Chains of Atom/Molecule Adsorbates in the Grooves of c-SWNT Bundles

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

The heat capacity of quasi-one-dimensional (1D) chains of Xe atom/N2molecule adsorbates (C Xe, C N2) in the outer grooves of closed single-walled carbon nanotube (c-SWNT) bundles have been first investigated at a temperature range of 2–60 K. Below 3–4 K, the temperature dependencies of C Xe(T) and C N2(T) are linear. The experimental data C Xe have been compared with theory (Šiber). The experimental and theoretical heat capacity curves are close to below 8 K. Above 8 K, the experimental curve C Xe(T) exceeds the theoretical one and the excess increases monotonously with temperature. We assume that the excess is caused mainly by the thermal expansion of 1D chains and the occurrence of vacancies in the 1D chains due to spatial redistribution of the Xe atoms from grooves to the positions near the grooves above 30 K. Below 8 K, the behavior of C N2(T) is qualitatively similar to the theoretical phonon heat capacity of 1D chains of Kr adatoms. Above 8 K, the dependence C N2(T) becomes steeper in comparison with the case of Kr adatoms. This behavior of the heat capacity C N2(T) is due to both the contribution of the rotational degrees of freedom of the N2 molecules and thermal expansion of 1D chains. The Debye temperatures have been estimated for 1D adsorbate chains.

PACS: 65.40.Ba Heat capacity

65.80.-g Thermal properties of small particles, nanocrystals, nanotubes, and other related systems

68.65.-k Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties;81.07.De Nanotubes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Nature 354:56

    Google Scholar 

  2. Saito R, Dresselhaus MS, Dresselhaus G (eds) (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  3. Dresselhaus MS, Eklund PC (2010) Adv Phys 49:705

    Google Scholar 

  4. Trasca RA, Kostov MK, Cole MW (2003) Phys Rev B 67:035410

    Google Scholar 

  5. Teizer W, Hallock RB, Dujardin E, Ebbesen TW (1999) Bull Am Phys Soc 44(1):519; Phys Rev Lett 82:5305 (1999);. Phys Rev Lett 84:1844 (2000)

    Google Scholar 

  6. Lasjaunias JC, Biljaković K, Sauvajol JL, Monceau P (2003) Phys Rev Lett 91:025901

    Google Scholar 

  7. Calbi MM, Toigo F, Cole MW (2001) Phys Rev Lett 86:5062

    Google Scholar 

  8. Diallo SO, Fåk B, Adams MA, Vilches OE, Johnson MR, Schober H, Glyde HR (2009) Eur Phys Lett 88:56005

    Google Scholar 

  9. Antsygina TN, Poltavsky II, Chishko KA, Wilson TA, Vilches OE (2005) Low Temp Phys 31:1007

    Google Scholar 

  10. Ancilloto F, Barranco M, Pi M (2003) Phys Rev Lett 91:105302

    Google Scholar 

  11. Zambano AJ, Talapatra S, Migone AD (2001) Phys Rev B 64:075415

    Google Scholar 

  12. Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV (2012) Low Temp Phys 38:523

    Google Scholar 

  13. Benedict LX, Louie SG, Cohen ML (1996) Solid State Commun 100:177

    Google Scholar 

  14. Hone J, Batlogg B, Benes Z, Johnson AT Fischer JE (2000) Science 289:1730

    Google Scholar 

  15. Calbi MM, Cole MW (2002) Phys Rev B 66:115413

    Google Scholar 

  16. Šiber A (2003) Phys Rev B 67:165426

    Google Scholar 

  17. Tu ZC, Ou-Yang ZC (2003) J Phys Condens Matter 15:6759

    Google Scholar 

  18. Pearce JV, Adams MA, Vilches OE, Johnson MR, Glyde HR (2005) Phys Rev Lett 95:185302

    Google Scholar 

  19. Full SJ, McNutt JP, Cole MW, Mbaye MT, Gatica SM (2010) J Phys Condens Matter 22:334206

    Google Scholar 

  20. Šiber A (2002) Phys Rev B 66:205406

    Google Scholar 

  21. Simonyan VV, Johnson JK, Kuznetsova A, Yates JT (2001) J Chem Phys 114:4180

    Google Scholar 

  22. Hertel T, Kriebel J, Moos G, Fasel R (2001) AIP Conf Proc 590:181

    Google Scholar 

  23. Ulbricht H, Kriebel J, Moos G, Hertel T (2002) Chem Phys Lett 363:252

    Google Scholar 

  24. Cole MW, Crespi VH, Stan G, Ebner C, Hartman JM, Moroni S, Boninsegni M (2000) Phys Rev Lett 84:3883

    Google Scholar 

  25. Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Phys Rev B 62:2173

    Google Scholar 

  26. Shai DE, Urban NM, Cole MW (2008) Phys Rev B 77:205427

    Google Scholar 

  27. Talapatra S, Zambano AZ, Weber SE, Migone AD (2000) Phys Rev Lett 85:138

    Google Scholar 

  28. Eletskii AV (2009) Phys Usp 52:209; Phys Usp 50, 225 (2007); Phys Usp 47, 1119 (2004)

    Google Scholar 

  29. Antsygina TN, Poltavsky II, Chishko KA (2006) Phys Rev B 74:205429

    Google Scholar 

  30. Antsygina TN, Poltavsky II, Chishko KA (2007) J Low Temp Phys 148:821

    Google Scholar 

  31. Antsygina TN, Poltavsky II, Chishko KA (2005) J Low Temp Phys 138:223

    Google Scholar 

  32. Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Popov SN, Vinnikov NA, Danilenko NI, Sundqvist B (2009) Low Temp Phys 35:484

    Google Scholar 

  33. Wilson T, Vilches OE (2003) Low Temp Phys 29:732

    Google Scholar 

  34. Talapatra S, Migone AD (2001) Phys Rev Lett 87:206106

    Google Scholar 

  35. Talapatra S, Migone AD (2002) Phys Rev 65:045416

    Google Scholar 

  36. Talapatra S, Krungleviciute V, Migone AD (2002) Phys Rev Lett 89:246106

    Google Scholar 

  37. Weber SE, Talapatra S, Journet C, Zambano A, Migone AD (2000) Phys Rev B 61:13150

    Google Scholar 

  38. Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Popov SN, Vinnikov NA, Sundqvist B (2010) Low Temp Phys 36:365

    Google Scholar 

  39. Manzhelii EV, Gospodarev IA, Feodosyev SB, Godovanaja NV (2012) In 9th international conference on cryocrystals and quantum crystals (CC2012), Odessa, p 63

    Google Scholar 

  40. Ramachandran S, Vilches OE (2007) Phys Rev B 76:075404

    Google Scholar 

  41. Šiber A (2002) Phys Rev B 66:235414

    Google Scholar 

  42. Kostov MK, Mercedes Calbi M, Cole MW (2003) Phys Rev B 68:245403

    Google Scholar 

  43. Cvitaš MT, Šiber A (2003) Phys Rev B 67:193401

    Google Scholar 

  44. Bagatskii MI, Sumarokov VV, Dolbin AV (2011) Low Temp Phys 37:424

    Google Scholar 

  45. Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Vinnikov NA, Popov SN, Sundqvist B (2008) Low Temp Phys 34:678

    Google Scholar 

  46. Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV, Sundqvist B (2012) Low Temp Phys 38:527

    Google Scholar 

  47. Bagatskii MI, Manzhelii VG, Sumarokov VV, Barabashko MS (2013) Low Temp Phys 39:618

    Google Scholar 

  48. Bagatskii MI, Barabashko MS, Sumarokov VV (2013) Low Temp Phys 39:441

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to V. Manzhelii, Yu. Freiman, M. Strzhemechny, S. Feodosyev, and K. Chishko for helpful discussions.

Electronic address: sumarokov@ilt.kharkov.ua

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sumarokov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sumarokov, V., Bagatskii, M., Barabashko, M. (2015). Heat Capacity of 1D Chains of Atom/Molecule Adsorbates in the Grooves of c-SWNT Bundles. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_15

Download citation

Publish with us

Policies and ethics