Skip to main content

The Effect of Sintering Temperature on Linear and Nonlinear Optical Properties of YAG Nanoceramics

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

Recent improvements in powder synthesis and ceramics sintering made it possible to fabricate high-quality optical materials. The work is devoted to the structural and optical characterization of the (\({Y_3}{Al_5}{O_{12}}\), YAG) ceramics prepared by high-pressure low-temperature technique. The structural properties of the studied ceramic samples was obtained by X-ray diffraction. The studies of the total and in-line transmittance as well as optical scattering indicatrices were performed in visible and NIR ranges. The scatterer size \(\sim200\) nm was estimated by Rayleigh–Gans–Debye model. It was shown that the studied samples demonstrate high transparency at 1064 nm. The nonlinear optical characterization of the samples was done by the self-action of the picosecond laser pulses at 1064 nm. The measured nonlinear optical response (\( \operatorname{Im}({{\chi }^{(3)}})\,\sim \,{{10}^{-11}}\,\text{esu} \) esu) showed significant dependence on the sintering temperature variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coble RL (1962) Sintering alumina: effect of atmospheres. J Am Ceram Soc 45(3):123–127

    Article  Google Scholar 

  2. Wang S, Zhang J, Luo D et al (2013) Transparent ceramics: processing, materials and applications. Prog Solid State Chem 41:20–54

    Article  Google Scholar 

  3. Li J-G, Ikegami T, Mori T (2005) Fabrication of transparent, sintered Sc2O3 ceramics. J Am Ceram Soc 88(4):817–821

    Article  Google Scholar 

  4. Ikegami T, Li J-G, Mori T, Moriyoshi Y (2002) Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide. J Am Ceram Soc 85(7):1725–1729

    Article  Google Scholar 

  5. Yadegari M, Asadian M, Saeedi H et al (2013) Formation of gaseous cavity defect during growth of Nd:YAG single crystals. J Cryst Growth 367:57–61

    Article  ADS  Google Scholar 

  6. Brandle C (2004) Czochralski growth of oxides. J Cryst Growth 264:593–604

    Article  ADS  Google Scholar 

  7. Muller G, Friedrich J (2005) Crystal growth, bulk: methods. In: Bassani F, Liedl LG, Wyder P (eds) Encyclopedia of condensed matter Physics. Elsevier Ltd., Oxford, pp 262–274

    Google Scholar 

  8. Tang F, Cao Y, Huang J et al (2012) Fabrication and laser behavior of composite yb:yag ceramic. J Am Ceram Soc 95(1):56–69

    Article  Google Scholar 

  9. Ikesue A, Aung YL (2006) Synthesis and performance of advanced ceramic lasers. J Am Ceram Soc 89(6):1936–1944

    Article  Google Scholar 

  10. Yagi H, Yanagitani T, Numazawa T, Ueda K (2007) The physical properties of transparent Y3Al5O12 elastic modulus at high temperature and thermal conductivity at low temperature. Ceram Int 33(5)711–714

    Article  Google Scholar 

  11. Yagi H, Yanagitani T, Takaichi K et al (2007) Characterizations and laser performances of highly transparent Nd\(^3+:Y_3\)Al5 O12 laser ceramics. Opt Mater 29(10):1258–1262

    Article  ADS  Google Scholar 

  12. Mezeix L, Green DJ (2006) Comparison of the mechanical properties of single crystal and polycrystalline yttrium aluminum garnet. Int J Appl Ceram Technol 3(2):166–176

    Article  Google Scholar 

  13. de With G, van Dijk H (1984) Translucent Y3Al5O12 ceramics. Mater Res Bull 19(12):1669–1674

    Article  Google Scholar 

  14. Mulder C, de With G (1985) Translucent Y3Al5O12 ceramics: electron microscopy characterization. Solid State Ionics 16:81–86

    Article  Google Scholar 

  15. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc 78(4):1033–1040

    Article  ADS  Google Scholar 

  16. Dong J, Shirakawa A, Ueda K et al (2007) Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. Opt Lett 32(13):1890–1892

    Article  ADS  Google Scholar 

  17. Lu J, Ueda K-i, Yagi H et al (2002) Neodymium doped yttrium aluminum garnet (Y3Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J Alloys Compd 341(1–2):220–225

    Article  Google Scholar 

  18. Zych E, Brecher C, Lingertat H (1998) Host-associated luminescence from YAG optical ceramics under gamma and optical excitation. J Lumin 78(2):121–134

    Article  Google Scholar 

  19. Nikl M, Mihokov E, Mare J et al (2000) Traps and timing characteristics of LuAG:Ce\(^3+\) scintillator. Phys Status Solidi A 181(1):R10–R12

    Article  ADS  Google Scholar 

  20. Zou Y, He D (2010) Nanosintering mechanism of MgAl2 O4 transparent ceramics under high pressure. Mater Chem Phys 123:529–533

    Google Scholar 

  21. Liu K, He D, Wang H et al (2012) High-pressure sintering mechanism of yttrium aluminum garnet (Y3 Al5 O12) transparent nanoceramics. Scr Mater 66:319–322

    Article  Google Scholar 

  22. Khvostantsev L, Vereshchagin L, Novikov A (1977) Device of toroid type for high pressure generation. High Temp High Press 9:637–639

    Google Scholar 

  23. Bass M, DeCusatis C, Enoch J et al (2009) Handbook of optics, 3rd edn, vol IV: optical properties of materials, nonlinear optics, quantum optics (set). Handbook of optics, McGraw-Hill Education. ISBN: 9780071498920

    Google Scholar 

  24. Grazulis S, Daskevic A, Merkys A et al (2012) Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420–D427

    Article  Google Scholar 

  25. Hreniak D, Gierlotka S, Lojkowski W et al (2005) High-pressure induced structural decomposition of re-doped YAG nanoceramics. Solid State Phenomena 106:17–22

    Article  Google Scholar 

  26. Lukowiak A, Wignusz R, Maczka M et al (2010) IR and Raman spectroscopy study of YAG nanoceramics. Chem Phys Lett 494:279–283

    ADS  Google Scholar 

  27. Makinson J, Lee J, Magner S et al (2000) X-rat diffraction signatures of defects in nanocrystalline materials. Adv X-Ray Anal 42:407–411

    Google Scholar 

  28. Gayvoronsky VYa, Kopylovsky MA, Vishnyakov EA et al (2009) Optical and nonlinear optical characterization of nanostructured oxyhydroxide of aluminium. Func Mat 16:136–140

    Google Scholar 

  29. Borshch A, Brodyn M, Gayvoronsky V et al (2004) Simulation of an experimental setup for measurements of light scattering by porous films. Ukr J Phys 49(2):196–202

    Google Scholar 

  30. Gayvoronsky V, Timoshenko V , Brodyn M et al (2005) Giant nonlinear optical response of nanoporous anatase layers. Appl Phys B 80:97–100

    Article  ADS  Google Scholar 

  31. Qin X, Yang H, Zhou G et al (2011) Synthesis of submicron-sized spherical Y2 O3 powder for transparent YAG ceramics. Mater Res Bull 46:170–174

    Article  Google Scholar 

  32. von Sellmeier W (1871) Zur erklarung der abnormen farbenfolge in spectrum einiger substanzen. Ann Phys Chem 219:272–282

    Google Scholar 

  33. Vovk E, Deineka T, Doroshenko A et al (2009) Production of the Y3 Al5 O12 transparent nanostructured ceramics. J Superhard Mater 31(4):252–259

    Article  Google Scholar 

  34. Dmitruk N, Goncharenko A, Venger E (2009) Optics of small particles and composite media. Naukova Dumka Kyiv, ISBN: 978–966-00–0948-8

    Google Scholar 

  35. Hulst H, van de Hulst H (1957) Light scattering: by small particles. Dover Books on Physics Series. DOVER PUBN Incorporated, ISBN: 9780486642284

    Google Scholar 

  36. Apetz R, van Bruggen MPB (2003) Transparent alumina: a light-scattering model. J Am Ceram Soc 86(3):480–486

    Article  Google Scholar 

  37. Chen J, Lu TC, Xu Y et al (2008) Ab initio study of a charged vacancy in yttrium aluminum garnet (Y3 Al5 O12). J Phys Condens Matter 20(32):32521–2

    Article  Google Scholar 

  38. Pritula I, Gayvoronsky V, Kolybaeva M et al (2011) Effect of incorporation of titanium dioxide nanocrystals on bulk properties of KDP crystals. Opt Mat 33:623–630

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge V. Yu. Timoshenko, G. I. Dovbeshko and T. E. Konstantinova for the assistance in sample characterization and discussions. This work was partially supported by NASU V-166 and VC-157 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Gayvoronsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gayvoronsky, V., Popov, A., Brodyn, M., Uklein, A., Multian, V., Shul’zhenko, O. (2015). The Effect of Sintering Temperature on Linear and Nonlinear Optical Properties of YAG Nanoceramics. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_13

Download citation

Publish with us

Policies and ethics