Skip to main content

Line Segment Based Approach to Pattern Detection in Mammographic Images

  • Conference paper
Information Technologies in Biomedicine, Volume 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

  • 1158 Accesses

Abstract

This paper describes a practical application of our novel method for detecting the boundaries between areas of different brightness to microcalcifications detection. We focus on microcalcifications detection step, whereas their classification, next important stage, is out of the scope of this paper. Microcalcifications are tiny specks of calcium, which may be an early sign of cancer. Because of that, their analysis based on mammographic examination is very important. Segments of boundaries are described by the coordinates of the start and the end point. Such representation of the boundary simplify further analysis of their shape. Some results of microcalcifications detection are presented. Parameters influence on results is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mias dataset. MIAS dataset, http://peipa.essex.ac.uk/info/mias.html

  2. Guliato, D., Rangayyan, R., Carnielli, W., Zuffo, J., Desautels, J.: Segmentation of breast tumors in mammograms by fuzzy region growing in. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1002–1005 (1998)

    Google Scholar 

  3. Huo, Z., Giger, M., Vyborny, C., Metz, C.: Breast cancer: Effectiveness of computer-aided diagnosis – observer study with independent database of mammograms. Radiology 224(2), 560–568 (2002)

    Article  Google Scholar 

  4. Rangayyan, R.M., Ayres, F.J., Desautels, J.L.: A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, Special Issue: Medical Applications of Signal Processing, Part I 344(34), 312–348 (2007)

    Article  MATH  Google Scholar 

  5. Sampat, M., Markey, M., Bovik, A.: others: Computer-aided detection and diagnosis in mammography. In: Handbook of Image and Video Processing, vol. 2, pp. 1195–1217 (2005)

    Google Scholar 

  6. Pryczek, M., Tomczyk, A., Szczepaniak, P.S.: Active Partition Based Medical Image Understanding with Self Organized, Competitive Spatch Eduction. Journal of Applied Computer Science 18(2), 67–78 (2010)

    Google Scholar 

  7. Tomczyk, A., Szczepaniak, P.S., Pryczek, M.: Cognitive hierarchical active partitions in distributed analysis of medical images. Journal of Ambient Intelligence and Humanized Computing, 1–11 (2012)

    Google Scholar 

  8. Łazarek, J., Szczepaniak, P.S., Tomczyk, A.: Method of Pattern Detection in Mammographic Images. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical Diagnostics. AISC, vol. 230, pp. 235–245. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Yoshida, H., Doi, K., Nishikawa, R.: Automated detection of clustered microcalcifications in digital mammograms using wavelet transform techniques. In: Loew, M.H. (ed.) Proceedings of the International Society for Optical Engineering, vol. 2167, pp. 868–886 (1994)

    Google Scholar 

  10. Yoshida, H., Doi, K., Nishikawa, R., Giger, M., Schmidt, R.: An improved computer-assisted diagnostic scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms. Acad. Radiol. 3, 621–627 (1996)

    Article  Google Scholar 

  11. Zhang, W., Yoshida, H., Nishikawa, R., Doi, K.: Optimally weighted wavelet transform based on supervised training for detection of microcalcifications in digital mammograms. Med. Phys. 25, 949–956 (1998)

    Article  Google Scholar 

  12. Wang, N., Karayiannis, T.C.: Detection of microcalcifications in digital mammograms using wavelets. IEEE Trans. Med. Imaging 17(4), 498–509 (1998)

    Article  Google Scholar 

  13. Chen, C., Lee, G.: On digital mammogram segmentation and microcalcification detection using multiresolution wavelet analysis. Graphical Models and Image Processing 59(5), 349–364 (1997), http://dx.doi.org/10.1006/gmip.1997.0443

    Article  Google Scholar 

  14. Cordella, L., Tortorella, F., Vento, M.: Combining experts with different features for classifying clustered microcalcifications in mammograms. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 324–327 (2000)

    Google Scholar 

  15. Edwards, D., Kupinski, M., Nagel, R., Nishikawa, R., Papaioannou, J.: Using a Bayesian neural network to optimally eliminate false-positive microcalcification detections in a CAD scheme. In: Yaffe, M. (ed.) Digital Mammography, pp. 168–173. Medical Physics Publishing, Madison (2000)

    Google Scholar 

  16. El-Naqa, I., Yang, Y., Wernick, M., Galatsanos, N., Nishikawa, R.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21(12), 1552–1563 (2002)

    Article  Google Scholar 

  17. Halkiots, S., Botsis, T., Rangoussi, M.: Automatic detection of clustered microcalcifications in digital mammograms using mathematical morphology and neural networks. Signal Processing 87(1), 1559–1568 (2007), http://dx.doi.org/10.1016/j.sigpro.2007.01.004

    Article  Google Scholar 

  18. Stojic, T., Reljin, I., Reljin, B.: Local contrast enhancement in digital mammography by using mathematical morphology. In: ISSCS 2005: Proceedings of the International Symposium on Signals, Circuits and Systems 2005, Iasi, vol. 2(1), pp. 609–612 (2005), http://dx.doi.org/10.1109/ISSCS.2005.1511314

  19. Arikidis, N., Karahaliou, A., Skiadopoulos, S., Korfiatis, P., Likaki, E., Panayiotakis, G., Costaridou, L.: Size-adapted microcalcification segmentation in mammography utilizing scale-space signatures. Computerized Medical Imaging and Graphics 34(6), 487–493 (2010), http://dx.doi.org/10.1016/j.compmedimag.2009.12.009

    Article  Google Scholar 

  20. Paquerault, S., Yarusso, L., Papaioannou, J., Jiang, Y.: Radial gradient-based segmentation of mammographic microcalcifications: observer evaluation and effect on CAD performance. Medical Physics 31(9), 2648–2657 (2004), http://dx.doi.org/10.1118/1.1767692

    Article  Google Scholar 

  21. Netsch, T., Peitgen, H.-O.: Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Trans. Med. Imaging 18(9), 774–786 (1999)

    Article  Google Scholar 

  22. Pandey, N., Salcic, Z., Sivaswamy, J.: Fuzzy logic based microcalcification detection. In: Widrow, B., et al. (eds.) Proceedings of the IEEE Neural Networks for Signal Processing Workshop X, pp. 662–671. IEEE Press (2000)

    Google Scholar 

  23. Gravielides, M., Lo, J., Floyd Jr., C.E.F.: Parameter optimization of a computer-aided diagnosis scheme for the segmentation of microcalcification clusters in mammograms. Medical Physics 29(4), 475–483 (2000), http://dx.doi.org/10.1118/1.1460874

    Article  Google Scholar 

  24. Smithuis, R., Pijnappel, R.: Breast - Calcifications Differential Diagnosis, Radiology department, Rijnland Hospital, Leiderdorp and Martini Ziekenhuis, Groningen, the Netherlands, http://www.radiologyassistant.nl/en/p4793bfde0ed53 (publication date May 11, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagoda Lazarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lazarek, J., Szczepaniak, P.S. (2014). Line Segment Based Approach to Pattern Detection in Mammographic Images. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics