Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter I will attempt to describe the phenomenological understanding of supercooling and the glass transition. A glass is generally defined (Greaves and Sen in Adv Phys 56(1):1–166, 2007 [25]; March and Tosi in Introduction to liquid state physics. World Scientific, Singapore, 2002 [44]) as an amorphous solid that has experienced a glass transition. This obviously raises the question of what constitutes a glass transition, which is a subject that requires significantly more discourse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasland S, McMillan PF (1994) Density-driven liquid–liquid phase separation in the system Al2O3-Y2O3. Nature 369:633–636

    Article  ADS  Google Scholar 

  2. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139–146

    Article  ADS  Google Scholar 

  3. Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids 131–133:13–31

    Article  Google Scholar 

  4. Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267(5206):1924–1935

    Article  ADS  Google Scholar 

  5. Angell CA, Ngai KL, Mckenna GB, McMillan PF, Martin SW (2000) Relaxation in glass forming liquids and amorphous solids. J Appl Phys 88(6):3113–3157

    Article  ADS  Google Scholar 

  6. Barnes AC, Skinner LB, Salmon PS, Bytchkov A, Pozdnyakova I, Farmer TO, Fischer HE (2009) Liquid–liquid phase transition in supercooled yttria-alumina. Phys Rev Lett 103(22):225702

    Article  ADS  Google Scholar 

  7. Bengtzelius U, Götze W, Sjölander A (1984) Dynamics of supercooled liquids and the glass transition. J Phys C: Solid State Phys 17(33):5915–5934

    Article  ADS  Google Scholar 

  8. Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54(25):2674–2677

    Article  ADS  Google Scholar 

  9. Boev V, Mitkova M, Lefterova E, Wagner T, Kasap S, Vlček M (2000) Glass formation in the Ge ± Se ± AgI ternary. J Non-Cryst Solids 266:867–871

    Article  ADS  Google Scholar 

  10. Brovchenko I, Geiger A, Oleinikova A (2003) Multiple liquid–liquid transitions in supercooled water. J Chem Phys 118(21):9473–9476

    Article  ADS  Google Scholar 

  11. Cohen I, Ha A, Zhao X, Lee M, Fischer T, Strouse MJ, Kivelson D (1996) A Low-temperature amorphous phase in a fragile glass-forming substance. J Phys Chem 100(20):8518–8526

    Article  Google Scholar 

  12. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31(5):1164–1169

    Article  ADS  Google Scholar 

  13. Cole JM, van Eck ERH, Mountjoy G, Newport RJ, Brennan T, Saunders GA (1999) A neutron diffraction and 27Al MQMAS NMR study of rare-earth phosphate glasses, (R2O3) x (P2O5)1-x , x = 0.187-0.263, R = Ce, Nd, Tb containing Al impurities. J Phys Condens Matter 11(47):9165–9178

    Article  ADS  Google Scholar 

  14. Debenedetti PG (2003) Supercooled and glassy water. J Phys Condens Matter 15(45):R1669–R1726

    Article  ADS  Google Scholar 

  15. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410(6825):259–267

    Article  ADS  Google Scholar 

  16. Demirjian BG, Dosseh G, Chauty A, Ferrer M-L, Morineau D, Lawrence C, Takeda K, Kivelson D, Brown S (2001) Metastable solid phase at the crystalline-amorphous border: the glacial phase of triphenyl phosphite. J Phys Chem B 105(11):2107–2116

    Article  Google Scholar 

  17. Eckert H (1992) Structural characterization of noncrystalline solids and glasses using solid state NMR. Prog Nucl Magn Reson Spectrosc 24(3):159–293

    Article  Google Scholar 

  18. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100(31):13200–13212

    Article  Google Scholar 

  19. Finn CBP (1993) Thermal physics, 2nd edn. Chapman and Hall, London

    Google Scholar 

  20. Franzese G, Malescio G, Skibinsky A, Buldyrev SV, Stanley HE (2001) Generic mechanism for generating a liquid–liquid phase transition. Nature 409(6821):692–695

    Article  ADS  Google Scholar 

  21. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339

    Article  Google Scholar 

  22. Goldstein M (2011) The past, present, and future of the Johari-Goldstein relaxation. J Non-Cryst Solids 357(2):249–250

    Article  ADS  Google Scholar 

  23. Götze W, Sjögren L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55(3):241–376

    Article  Google Scholar 

  24. Greaves GN (1985) EXAFS and the structure of glass. J Non-Cryst Solids 71:203–217

    Article  ADS  Google Scholar 

  25. Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56(1):1–166

    Article  ADS  Google Scholar 

  26. Greaves GN, Wilding MC, Fearn S, Langstaff D, Kargl F, Cox S, Van QVu, Majérus O, Benmore CJ, Weber R, Martin CM, Hennet L (2008) Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science 322:566–570

    Article  ADS  Google Scholar 

  27. Guggenheim EA (1935) The Statistical Mechanics of Regular Solutions. Proc R Soc A Math Phys Eng Sci 148(864):304–312

    Article  MATH  ADS  Google Scholar 

  28. Guillot B, Guissani Y (2003) Polyamorphism in low temperature water: a simulation study. J Chem Phys 119(22):11740

    Article  ADS  Google Scholar 

  29. Guthrie M, Urquidi J, Tulk C, Benmore C, Klug D, Neuefeind J (2003) Direct structural measurements of relaxation processes during transformations in amorphous ice. Phys Rev B 68(18):1–5

    Article  Google Scholar 

  30. Ha A, Cohen I, Zhao X, Lee M, Kivelson D (1996) Supercooled liquids and polyamorphism. J Phys Chem 100(1):1–4

    Article  Google Scholar 

  31. Hédoux A, Guinet Y, Descamps M, Hernandez O, Derollez P, Dianoux AJ, Foulon M, Lefèbvre J (2002) A description of the frustration responsible for a polyamorphism situation in triphenyl phosphite. J Non-Cryst Solids 307:637–643

    Article  Google Scholar 

  32. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169(3):211–266

    Article  ADS  Google Scholar 

  33. Johari GP, Ferrari C (1997) Calorimetric and dielectric investigations of the phase transformations and glass transition of triphenyl phosphite. J Phys Chem 5647(49):10191–10197

    Article  Google Scholar 

  34. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926

    Article  ADS  Google Scholar 

  35. Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K (2000) A first-order liquid–liquid phase transition in phosphorus. Nature 403(6766):170–173

    Article  ADS  Google Scholar 

  36. Katayama Y, Inamura Y, Mitzutani T, Yamakata M, Utsumi W, Shimomura O (2004) Macroscopic separation of dense fluid phase and liquid phase of phosphorus. Science 306(5697):848–851

    Article  ADS  Google Scholar 

  37. Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43(2):219–256

    Article  Google Scholar 

  38. Kennedy GC, Jayaraman A, Newton RC (1959) Fusion curve and polymorphic transitions of cesium at high pressures. Phys Rev 126(4):1363–1366

    Article  ADS  Google Scholar 

  39. Klement W Jr, Cohen LH, Kennedy GC (1966) Melting and freezing of selenium and tellurium at high pressures. J Phys Chem Solids 27(1):171–177

    Article  ADS  Google Scholar 

  40. Leutheusser E (1984) Dynamical model of the liquid-glass transition. Phys Rev A 29(5):2765

    Article  ADS  Google Scholar 

  41. Limmer DT, Chandler D (2011) The putative liquid–liquid transition is a liquid-solid transition in atomistic models of water. J Chem Phys 135(13):134503

    Article  ADS  Google Scholar 

  42. Loerting T, Salzmann C, Kohl I, Mayer E, Hallbrucker A (2001) A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys Chem Chem Phys 3(24):5355–5357

    Article  Google Scholar 

  43. Majérus O, Cormier L, Itié J-P, Galoisy L, Neuville DR, Calas G (2004) Pressure-induced Ge coordination change and polyamorphism in SiO2–GeO2 glasses. J Non-Cryst Solids 345–346:34–38

    Article  Google Scholar 

  44. March NH, Tosi MP (2002) Introduction to liquid state physics. World Scientific, Singapore

    Book  Google Scholar 

  45. Mayer E, Brüggeller P (1982) Vitrification of pure liquid water by high pressure jet freezing. Nature 298(5876):715–718

    Article  ADS  Google Scholar 

  46. McMillan PF (2004) Polyamorphic transformations in liquids and glasses. J Mater Chem 14(10):1506–1512

    Article  Google Scholar 

  47. Mishima O, Stanley HE (1998) The relationship between liquid, supercooled and glassy water. Nature 396(6907):329–335

    ADS  Google Scholar 

  48. Mishima O, Stanley HE (1998) Decompression-induced melting of ice IV and the liquid–liquid transition in water. Nature 392(6672):164–168

    Article  ADS  Google Scholar 

  49. Mishima O, Suzuki Y (2002) Propagation of the polyamorphic transition of ice and the liquid–liquid critical point. Nature 419(6907):599–603

    Article  ADS  Google Scholar 

  50. Mishima O, Calvert LD, Whalley E (1984) “Melting ice” I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310:393–395

    Article  ADS  Google Scholar 

  51. Mishima O, Calvert LD, Whalley E (1985) An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314(6006):76

    Article  ADS  Google Scholar 

  52. Mishima O, Takemura K, Aoki K (1991) Visual observations of the amorphous–amorphous transition in H2O under pressure. Science 254(5030):406–408

    Article  ADS  Google Scholar 

  53. Monaco G, Falconi G, Crichton W, Mezouar M (2003) Nature of the first-order phase transition in fluid phosphorus at high temperature and pressure. Phys Rev Lett 90(25):255701

    Article  ADS  Google Scholar 

  54. Morishita T (2001) Liquid–liquid phase transitions of phosphorus via constant-pressure first-principles molecular dynamics simulations. Phys Rev Lett 87(10):105701

    Article  ADS  Google Scholar 

  55. Nagashio K, Kuribayashi K (2002) Spherical yttrium aluminum garnet embedded in a glass matrix. J Am Ceram Soc 85(9):2353–2358

    Article  Google Scholar 

  56. Paluch M, Roland C, Pawlus S, Zioło J, Ngai K (2003) Does the Arrhenius temperature dependence of the Johari-Goldstein relaxation persist above T g? Phys Rev Lett 91(11):115701

    Article  ADS  Google Scholar 

  57. Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behaviour of metastable water. Nature 360(6402):324–328

    Article  ADS  Google Scholar 

  58. Rapoport E (1967) Model for melting-curve maxima at high pressure. J Chem Phys 46(8):2891–2895

    Article  ADS  Google Scholar 

  59. Rapoport E (1967) Melting curve of NaClO3. J Chem Phys 46(9):3279–3281

    Article  ADS  Google Scholar 

  60. Salmon PS (2007) The structure of tetrahedral network glass forming systems at intermediate and extended length scales. J Phys: Condens Matter 19(45):455208

    ADS  Google Scholar 

  61. Skinner LB, Barnes AC, Salmon PS, Crichton WA (2008) Phase separation, crystallization and polyamorphism in the Y2O3-Al2O3 system. J Phys: Condens Matter 20:205103

    ADS  Google Scholar 

  62. Stillinger FH (1995) A topographic view of supercooled liquids and glass formation. Science 267(5206):1935–1939

    Article  ADS  Google Scholar 

  63. Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60(4):1545–1557

    Article  ADS  Google Scholar 

  64. Tammann G, Hesse W (1926) Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten. Z Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  65. Tanaka H, Kurita R, Mataki H (2004) Liquid–liquid transition in the molecular liquid triphenyl phosphite. Phys Rev Lett 92(2):025701

    Article  ADS  Google Scholar 

  66. Tse J, Klug D, Guthrie M, Tulk C, Benmore C, Urquidi J (2005) Investigation of the intermediate- and high-density forms of amorphous ice by molecular dynamics calculations and diffraction experiments. Phys Rev B 71(21):214107

    Article  ADS  Google Scholar 

  67. Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10(5):473–488

    Article  ADS  Google Scholar 

  68. Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34(1):120–125

    Article  ADS  Google Scholar 

  69. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17(1):71–73

    Article  ADS  Google Scholar 

  70. Vogel H (1921) Das temperatur-abhängigkeitsgesetz der viskosität von flüssigkeiten. Phys Zeit 22:645–646

    Google Scholar 

  71. Wilding MC, Wilson M, McMillan PF (2005) X-ray and neutron diffraction studies and MD simulation of atomic configurations in polyamorphic Y2O3-Al2O3 systems. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 363(1827):589–607

    Article  ADS  Google Scholar 

  72. Wilding M, Guthrie M, Bull CL, Tucker MG, McMillan PF (2008) Feasibility of in situ neutron diffraction studies of non-crystalline silicates up to pressures of 25 GPa. J Phys Condens Matter 20(24):244122

    Article  ADS  Google Scholar 

  73. Williams G, Watts C (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66(565P):80–85

    Article  Google Scholar 

  74. Winkel K, Elsaesser M, Mayer E, Loerting T (2008) Water polyamorphism: reversibility and (dis)continuity. J Chem Phys 128(4):044510

    Article  ADS  Google Scholar 

  75. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Farmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farmer, T. (2015). Theory of Supercooled Liquids and Glasses. In: Structural Studies of Liquids and Glasses Using Aerodynamic Levitation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06575-5_2

Download citation

Publish with us

Policies and ethics