Skip to main content

Pillars of Integrated Disease Management

  • Chapter
  • First Online:
Wheat Diseases and Their Management

Abstract

Economical and sustainable disease control can be obtained through the establishment of an integrated disease management system. The first integrated management system was developed by Dwight Isely to manage the population of cotton boll worm (Anthonomus grandis), which gave positive results for over 60 years in the United States (Newson 1980). Later, several other integrated management systems were developed and their basic concept was introduced to develop integrated management systems for diseases as well. Although there are several definitions of the integrated management system, according to Ledbetter et al. (1979) cited by Blair and Edwards (1980), “it is a system where all the possible pest control techniques are used to keep the pest population below the economic threshold. Each technique is eco-friendly and is compatible with the objectives of the user. Integrated management is more than merely the control of pests through chemicals. In several cases it includes the biological, cultural and sanitary control techniques for a complex of pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Amuzescu AM (2009) Climate change impact on the evolution of the main agricultural cultures in the Romanian Plain. Annu Rev Food Sci Technol 10:394–399

    Google Scholar 

  • Anonymous (1997) Precision agriculture in the 21st century. National Academy Press, Washington, DC, p 141

    Google Scholar 

  • Araujo LG, Prabhu AS, Freire AB (1997) Variação somaclonal na cultivar de arroz IAC-47 para Resistência parcial a brusone. Fitopatol Bras 22:125–130

    Google Scholar 

  • Bakshi T, Bozorgipour R, Mostafavi K, Kashani HH (2012) Wheat yellow rust resistance improvement in wheat and maize cross progenies using double haploid method. Sci Res Essays 7:2708–2712. doi:10.5897/SRE11.1700

    Google Scholar 

  • Barak JD, Schroeder BK (2012) Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annu Rev Phytopathol 50:241–266

    CAS  PubMed  Google Scholar 

  • Barrons JA (1980) Contributions of pesticides to land and energy conservation. In: Kommendahl T (ed) Proc. IX Sym. Inter. Cong. Pl. Protec. Washington, DC, 5–11 August 1979, pp 212–215

    Google Scholar 

  • Behlau F, Nunes LM, Leite RP (2006) Meio de cultura semi-seletivo para detecção de Curtobacterium flaccumfaciens pv. flaccumfaciens em solo e sementes de feijoeiro. Summa Phytopathol 32:394–396

    Google Scholar 

  • Bell JC, Butler CA, Thompson JA (1995) Soil terrain modeling for site-specific agricultural management. In: Proc. Site-specific Mgnt. For Agric. Sys.March, 1994, Minneapolis, MN. ASA-CSSA-SSSA, Madison, pp 27–30

    Google Scholar 

  • Biffen RH (1905) Mendel’s law of inheritance and wheat breeding. J Agric Sci 1:4–48

    Google Scholar 

  • Bjornstand A, Skinnes H, Thoresen K (1993) Comparison between doubled haploid lines produced by anther culture, the Hordeum bulbosum-method and lines produced by single seed descent in barley crosses. Euphytica 66:135–144

    Google Scholar 

  • Blair BD, Edwards CR (1980) Development and status of extension integrated pest management programs in the United States. Bull Entomol Soc Am 26:363–368

    Google Scholar 

  • Blakeman RH (1990) The identification of crop disease and stress by aerial photography. In: Steven MD, Clark JA (eds) Applications of remote sensing in agriculture. Butterworths, London, pp 229–254

    Google Scholar 

  • Bockus WW, Wolf ED, Gill BS, Jardine DJ, Stack JP, Bowden RL, Fritz AK, Martin TJ (2011) Historical durability of resistance to wheat diseases in Kansas. Plant Health Progr 2011-0802-01-RV

    Google Scholar 

  • Bogo A, Boff P (1997) Ocorrência da doença-açucarada (Claviceps africana) na cultura do sorgo-forrageiro no Brasil. Fitopatol Bras 22:450

    Google Scholar 

  • Boller W, Forcelini CA, Hoffman LL (2007) Tecnologiade aplicação de fungicidas—Parte I. RAPP 15:243–276

    Google Scholar 

  • Boller W, Hoffman LL, Forcelini CA, Casa RT (2008) Tecnologia de aplicação de fungicida—Parte II. Annu Rev Pathol Pl—RAPP 16:85–132

    Google Scholar 

  • Boukef S, McDonald BA, Yahylo A, Resgui S, Brunner PC (2012) Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia. Eur J Plant Pathol 132:111–122

    CAS  Google Scholar 

  • Bourlaug NE (1953) New approach to the breeding of wheat varieties resistant to Puccinia graminis tritici. Phytopathology 43:4679 (abst.)

    Google Scholar 

  • Brammer SP, Fernandes MIBM, Barcellos AL, Milach SCK (2004) Genetic analysis of adult-plant resistance to leaf rust in a double haploid wheat (Triticum aestivum L. in Tell) population. Genet Mol Biol 27:432–436

    Google Scholar 

  • Browning JA (1988) Current thinking on the use of diversity to buffer small grains against highly epidemic and variable foliar pathogens: problems and future prospects. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rust of wheat, June 29-July 1, 1987. CIMMYT, Mexico, pp 76–90

    Google Scholar 

  • Calegari A, Mondardo A, Bulisani EA, Wildener LP, Costa MBB, Alcantara PD, Miasaka S, Amado TGC (1993) Adubação verde no sul do Brasil. AS-PTA, Rio de Janeiro, p 446p

    Google Scholar 

  • Campos VP, Silva JRC, Campos HD, Pereira LHC (1997) Fitonematoides. Fitopatol Bras 32(1):16–17 (Suplemento)

    Google Scholar 

  • Cardoso R, Mehta YR (1997) Doenças de Canola, p 1. In: Vale FXR, Zambolim L (eds) Controle de doenças de plantas—Grandes Culturas, vol 1. Universidade Federal de Viçosa, Viçosa, p 1132

    Google Scholar 

  • Carris LM (2010) Common bunt (striking smut). In: Bockus WW et al (eds) Compendium of wheat diseases and pests, 3rd edn. American Phytopathological Society, St. Paul, pp 60–61

    Google Scholar 

  • Casão R Jr, Araujo AG, Leanillo RF (2012) No-till agriculture in southern Brazil. FAO/IAPAR, Londrina, p 77

    Google Scholar 

  • Casassola A, Brammer SP (2011) Translocações cromossômicas entre trigo e centeio: uma alternativa ao melhoramento. Ciênc Rural 41(8):1307, http://dx.doi.org/10.1590/so103-84782011005000106

    Google Scholar 

  • Caviglione JH, Fidalski J, Araujo AG, Barbosa GMC, Lianillo RF, Souto AR (2010) Espaçamento entre terraços em plantio direto. IAPAR, Londrina, 59

    Google Scholar 

  • Celetti MJ, Meizer MS, Boland GJ (2005) Integrated management of angular leaf spot (Phaeoisariopsis griseola (Sacc.)Ferr.) on snap beans in Ontario. Plant Health Progr 11:1–8

    Google Scholar 

  • CERES (1982) Pest resistance poses challenge to chemical control. FAO, Rome

    Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, White N (2011) Rust proofing wheat for a changing climate. Euphytica 179:19–32

    Google Scholar 

  • Christiane K, Ghaffary SMT, Bruelheide H, Kema GHJ, Saad B (2012) The genetic architecture of seeding resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitar × Mazurka. Mol Breed 29:813–830

    Google Scholar 

  • Clafin LE, Vidaber AK, Sasser MM (1987) MXP a semi-selective medium for Xanthomonas campestris pv. phaseoli. Phytopathology 77:730–734

    Google Scholar 

  • Cook RJ (2000) Advances in plant health management. Annu Rev Phytopathol 38:95–116

    CAS  PubMed  Google Scholar 

  • Costa JL, Rava CA (2003) Influência de Brachiária no manejo de doenças do feijoeiro com origem no solo. In: Kluthcouski J et al (eds) Integração lavoura-pecuária. Embrapa, Santo Antonio de Goiás, pp 523–533

    Google Scholar 

  • Cowger C, Mundt CC (2002) Effects of wheat cultivar mixtures on epidemic progression of Septoria tritici blotch and pathogenicity of Mycosphaerella graminicola. Phytopathology 92:617–623

    PubMed  Google Scholar 

  • Cultivar (1999) Empresa Jornalística Ceres Ltda., São Paulo, SP, Janeiro, pp 34–36

    Google Scholar 

  • Cunha JPAR, Farnese AC, Olivet JJ, Villalha J (2011) Spray deposition on soybean crop in aerial and ground application. Eng Agric 31(2):343–351, http://dx.doi.org/10.1590/S0100-69162011000200014

    Google Scholar 

  • Danelli AD, Viana E, Fiallos FG (2012) Fungos patogênicos detectados em sementes de trigo de ciclo precoce e médio, produzidas em três lugares do Rio Grande do Sul, Brasil. Ciênc Agropecuária 1:67–74

    Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • De Tempe J (1958) Three years of field experimentation on seed-borne diseases and seed treatment of cereals. Proc Int Seed Test Assoc 23:38–67

    Google Scholar 

  • Del Ponte EM, Fernandes JMC, Pavan W (2005) A risk infection simulation model for Fusarium head blight of wheat. Fitopatol Bras 30:634–642

    Google Scholar 

  • Del Ponte EM, Fernandes JM, Pavan W, Baethgen WE (2009) A model-based assessment of the impacts of climate variability on Fusarium head blight Seasonal risk in southern Brazil. J Phytopathol 157:675–681

    Google Scholar 

  • Delp CJ (1980) Resistance to plant disease control agents. How to cope with it. In: Kommendahl T (ed.) Proc. IX Symp. Inter. Congr. Pl. Protec., Washington, DC, USA, 5–11 August 1979, pp 253–261

    Google Scholar 

  • Denardin JE, Sattler A, Santi A (2007) Gestão da água em sistema de produção sob plantio direto. In: Canali et al. (eds). Gestão sustentável do agronegócio—Simpósio sobre plantio direto na palha, Federação Brasileira sobre Plantio Direto na Palha, Ponta Grossa, PR, Anais, pp 63–71

    Google Scholar 

  • Diehl JA (1979) Influência de sistema de cultivo sobre podridões de raízes de trigo. Summa Phytopathol 5:134–139

    Google Scholar 

  • Diehl JA, Tinline RD, Shipton PJ, Kochhan RA, Rovira AD (1982) The effect of fallow periods on common root rot of wheat in Rio Grande do Sul, Brazil. Phytopathology 72:1297–1301

    Google Scholar 

  • Diehl JA, Tinline RD, Kochhan RA (1983) A perda em trigo causada pela podridão comum de raízes no Rio Grande do Sul, 1978-81. Fitopatol Bras 6:507–511

    Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defense: a genomics perspectives. Mol Plant Pathol 3:371–390

    CAS  PubMed  Google Scholar 

  • Elligboe AH (1976) Genetics of host-parasite relationships. In: Heitefuss R, Williams PH (eds) Physiological plant pathology. Springer, Berlin, pp 761–778

    Google Scholar 

  • Ellingboe AH (1975) Horizontal resistance: an artifact of experimental procedure? Aust Plant Pathol Soc Newsl 4:44–46

    Google Scholar 

  • Elnanghy MH, Shaw M (1966) Correlation between resistance to stem rust and the concentration of glucoside in wheat. Nature 210:417–418

    Google Scholar 

  • EMBRAPA (2011) Informações técnicas para a safra 2012: Trigo e Triticale. Sistemas de Produção 9. EMBRAPA, p 204

    Google Scholar 

  • Fan J, Doemer P (2012) Genetic and molecular basis of nonhost disease resistance: complex, yes; silver bullet, no. Curr Opin Plant Biol 15:400–406. doi:10.1016/j.ppi.2012.03.001

    CAS  PubMed  Google Scholar 

  • Faraji J (2011) Wheat culture blends a step forward to sustainable agriculture. Afr J Agric Res 6:33

    Google Scholar 

  • Fernandes JMC (1997) As doenças das plantas e o sistema de plantio direto. Rev Annu Plant Patol 5:317–352

    Google Scholar 

  • Fernandes JMC, Pavan W (2002) A phenology based predictive model for Fusarium head blight of wheat. In: National Fusarium Head Blight Forum. Michigan State University, pp 154–158

    Google Scholar 

  • Fernandes JMC, Picinnini EC (1999) Sistema de suporte a tomada de decisão para a otimizaçãodo uso de fungicidas em cultura de trigo. Fitopatol Bras 24:9–17

    Google Scholar 

  • Fernandes JMC, Cunha GR, Ponte EP, Pavan W, Pires JL, Baethgem W, Gimenez A, Magrin G, Travasso MI (2004) Modeling Fusarium head blight in wheat under climate change using linked process-based models. In: 2nd Inter. Symp. On Fusarium head blight, Orlando, FL

    Google Scholar 

  • Fernandes JM, Ponte ED, Pavan W, Cunha GR (2005) Web-based system to true forecast disease epidemics: I. Fusarium head blight of wheat. In: 7th International Wheat Conference, 2007, Mar del Plata. Wheat production in stressed environments. Springer, Dordrecht

    Google Scholar 

  • Fernandes JM, Ponte ED, Pavan W, Cunha GR (2007) Web-based system to true forecast disease epidemics-case study for Fusarium head blight of wheat. In: Sivakumar MVK, Hansen J (eds) Climate prediction in agriculture: advances and challenges. Springer, Berlin, pp 265–271

    Google Scholar 

  • Fernandes JM, Pavan W, Sanhueza RM (2011) SISALERT—a generic web-based plant disease forecasting system. In: International conference on information and communication technologies. Agriculture, Food and Environment, 5, Skiathos, proceedings, vol 1. HAICTA, Skiathos, pp 225–233

    Google Scholar 

  • Fernandez MR, Fernandes JMC, Sutton JC (1993) Effects of fallow and of summer and winter crops on survival of wheat pathogens in crop residues. Plant Dis 77:689–702

    Google Scholar 

  • Fernando JC, Gonzalez J, Hansen O, Lattanzi A, Morelli H, Melendez J, Zeljkovich LT, Zeljkovich V (1987) Labranza conservacionista. Publicação Técnica 3, INTA, Argentina

    Google Scholar 

  • Flor HH (1947) Inheritance of reaction to rust in flax. J Agric Res 74:241–262

    Google Scholar 

  • Forcelini CA (1995) Tratamento de semente no Brasil. In: Menten JOM (ed) Patógenos em sementes: detecção, danos e controle. ESALQ/USP, São Paulo, pp 246–264

    Google Scholar 

  • Franzluebbers AJ (2007) Integrated crop-livestock systems in the south-eastern USA. Agron J 99:361–372

    Google Scholar 

  • Friesen TL, Chu CG, Liu ZH (2009) Host-selective toxins produced by Stagnospora nodorum confer disease susceptibility in adult wheat plant under field conditions. Theor Appl Genet 118:1489–1497

    CAS  PubMed  Google Scholar 

  • Galerani PR (1994) Cropping systems and rotations. In: Tropical soybean improvement and production. Plant production and protection series, FAO, Rome. pp 145–152

    Google Scholar 

  • Gallais A (1988) A method of line development using doubled haploids: the single doubled haploid descent recurrent selection. Theor Appl Genet 75:330–332

    Google Scholar 

  • Gazziero DLP (1994) No-till cultivation. In: Tropical soybean improvement and production. Plant production and protection series, FAO, Rome, pp 171–174

    Google Scholar 

  • Gonzalez AM, Marcel TC, Niks TE (2012) Evidence for a minor gene-for gene interaction explaining non-hypersensitive polygenic partial disease resistance. Phytopathology 102:1086–1093

    PubMed  Google Scholar 

  • Gorgen CA, Lobo JRM, Gontijo GHA, Pimenta G, Carneiro LC (2007) Manejo integrado de mofo branco da soja utilizando Tricoderma harzianum e palhada de Brachiaria ruziziensis. Fitopatol Bras 32(1):150–151 (Suplemento)

    Google Scholar 

  • Gorgen CA, Civardi EA, Ragagnim VA, Silvera Neto NA, Carneiro LC, Lobo Junior M (2010) Redução do inóculo inicial de Sclerotinia sclerotiorum em soja cultivada após uso do sistema Santa Fé. Pesq Agropec Bras 45:1102–1108

    Google Scholar 

  • Goulart ACP (1999) Controle de oídio e da ferrugem da folha pelo tratamento de sementes de trigo com fungicidas. Boletim de Pesquisa No. 1. Embrapa Agropecuária do oeste, Dourados

    Google Scholar 

  • Gullino ML, Kuijpera LAM (1994) Social and political implications of managing plant diseases with restricted fungicides in Europe. Annu Rev Phytopathol 32:559–581

    CAS  PubMed  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel ge-nomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    CAS  PubMed  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexinas: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    CAS  PubMed  Google Scholar 

  • Hatfield JL, Pinter PJ (1993) Remote sensing for crop protection. Crop Prot 12:403–414

    Google Scholar 

  • Heitefuss R (2012) Fungicide resistance in crop protection, risk and management. J Phytopathol 160:504–506

    Google Scholar 

  • Hewett PD (1970) A note on extraction rate in the embryo method for loose smut of barley Ustilago nuda (Jens.). Rostr Proc Int Seed Test Assoc 35:181–183

    Google Scholar 

  • Hewett PD (1972) Resistance to barley loose smut (Ustilago nuda) in the variety Emir. Trans Br Mycol Soc 65:7–18

    Google Scholar 

  • Hewett PD (1975) Septoria nodorum on seedlings and stubble of winter wheat. Trans Br Mycol Soc 65(1):7–18

    Google Scholar 

  • Horsfall JC (1957) Principles of fungicidal actions. Cronica Botanica, Waltham

    Google Scholar 

  • Hubber DM (1976) The role of nutrients in resistance of plants to disease. Handbook of nutrition and food, vol 4. CRC Press, Cleveland (Total 10 vol.)

    Google Scholar 

  • Jahne A, Beker D, Brettschneider R, Lorz H (1994) Regeneration of transgenic, microscope-derived, fertile barley. Theor Appl Genet 89:525–533

    CAS  PubMed  Google Scholar 

  • Jain M (2011) The emergence of fungal diseases and the incidence of leaf spot diseases in Finland. Agr Food Sci 20:62–73

    Google Scholar 

  • Jalali BL (1999) Molecular biology and host-pathogen interactions: do we have enough answers? Indian Phytopathol 52(3):209–214

    Google Scholar 

  • James WC, Shih CS, Callbeck LC, Hodgson WA (1973) Inter-plot interference in field experiments with late blight of potato. Phytopathology 63:1269–1275

    Google Scholar 

  • Johnston CO (1934) The effect of mildew infection on the response of wheat leaf tissues normally resistant to leaf rust. Phytopathology 24:1045–1046

    CAS  Google Scholar 

  • Jorgensen J (1974) Occurrence and importance of seed-borne inoculum of Cochliobolus sativus on barley seed in Denmark. Acta Agric Scand 24:49–54

    Google Scholar 

  • Kelm C, Ghaffary SMT, Bruelheide H, Roder MS, Miersch S, Weber WE, Kema GHJ, Saal B (2012) The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitair × Muzurka. Mol Breed 29:813–830

    Google Scholar 

  • Knott DR (1988) Using polygenic resistance to breed for stem rust resistance in wheat. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to rusts of wheat. CIMMYT, Mexico, pp 39–47

    Google Scholar 

  • Kohli MM, Mehta YR, Guzman L, Viedma LD, Cubilla LE (1996) Pyricularia Blast—a threat to wheat cultivation. Czech J Genet Plant Breed 47(Special Issue):S00–S04

    Google Scholar 

  • Kaué J (1996) Phytoalexins, stress metabolism and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    Google Scholar 

  • Lahman LK, Schaad NW (1985) Evaluation of the “Dome test” as a reliable assay for seed-borne bacterial blight pathogens of beans. Plant Dis 69:680–683

    Google Scholar 

  • Laurie DA, Bennet MD (1988) The production of haploid wheat plants from wheat maize crosses. Theor Appl Genet 76:393–397

    CAS  PubMed  Google Scholar 

  • Leite Junior RP, Meneguim L, Behl AU, Rodrigues SR, Bianchini A (2001) A ocorrência de Curtobacterium flacumfaciens subs. flacumfaciens em feijoeiro no Paraná e Santa Catarina. Fitopatol Bras 26:303–304 (Abst.)

    Google Scholar 

  • Lihoczki-Krsjak S, Szabo-Hever A, Toth B, Kotai C, Bartok T, Varga M, Farady L, Mesterhazy A (2010) Prevention of Fusarium mycotoxin contamination by breeding and fungicide application to wheat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 92:616–628

    Google Scholar 

  • Liu CA, Jin SL, Zhou LM, Jia Y, Ki FM, Xiong YC, Ki XG (2009) Effects of plastic film much and tillage on maize productivity and soil parameters. Eur J Agron 31:241–249

    CAS  Google Scholar 

  • Loegering WQ (1984) Genetics of pathogen host association. In: Bushnell WR, Roelfs AP (eds) Cereal rusts vol. I: origins, specificity, structure and physiology. Academic, Orlando, pp 165–192

    Google Scholar 

  • Luz WC (1984) Yield losses caused by fungal foliar wheat pathogens in Brazil. Phytopathology 74:1403–1407

    Google Scholar 

  • Machado JC, Langerak CJ, Jaccoud-Filho DS (2002) Seed-borne fungi: a contribution to routine seed health analysis. International Seed Testing Association (ISTA), Bassersdorf, p 138

    Google Scholar 

  • Mathur SB, Cunfer BM (eds) (1993) Seed-borne diseases and seed health testing of wheat. Danish Government Institute of Seed Pathology for Developing Countries, Copenhagen, p 168

    Google Scholar 

  • McDonald BA (2010) How can we achieve durable disease resistance in agricultural ecosystems. New Phytopathol 185:3–5. doi:10.1111/j.1469-8137.2009.03108

    Google Scholar 

  • McGriff E (2012) Wheat disease update. Univ. Georgia Extension Service Bull., USA, March, 2012

    Google Scholar 

  • Mcintosh RA, Watson IA (1982) Genetics of host pathogen interactions in rusts. In: Scott KJ, Chakravorty AK (eds) The rust fungi. Academic, London, pp 121–149

    Google Scholar 

  • Mead HW (1942) Environmental relationship in a seed –borne disease of barley caused by Helminthosporium sativum Pammel, King and Bakke. Can J Res 20:525–538

    Google Scholar 

  • Mehta YR (1975) Leptosphaeria nodorum on wheat in Brazil and its importance. Plant Dis Rep 59:404–406

    Google Scholar 

  • Mehta YR (1978) Doenças do trigo e seu controle. Editora Ceres, São Paulo, p 190

    Google Scholar 

  • Mehta YR (1981) Conidial production, sporulation period and extension of lesion of Helminthosporium saivum on flag leaves of wheat. Pesq Agropec Bras 16:77–99

    Google Scholar 

  • Mehta YR (1993) Manejo integrado de enfermedades de trigo. Imprenta Landivar, Santa Cruz de la Sierra, p 314

    Google Scholar 

  • Mehta YR (1996a) Interdisciplinary integration—a prerequisite to integrated disease management programs. Indian J Mycol Plant Pathol 26(1):178–184

    Google Scholar 

  • Mehta YR (1996b) Resistência de cultivares de trigo a Xanthomonas campestris pv. undulosa através de taxa de extensão de lesão. Summa Phytopathol 22:205–209

    Google Scholar 

  • Mehta YR (1997) Constrains on the integrated management of spot blotch of wheat. In: Duveiller E et al (eds) Helminthosporium blights of wheat: spot blotch and tan spot. CIMMYT, Mexico, pp 18–27

    Google Scholar 

  • Mehta YR, Angra GC (2000) Somaclonal variation for disease resistance in wheat and production of dihaploids through wheat × maize hybrids. Genet Mol Biol 23(3):617–622

    Google Scholar 

  • Mehta YR, Baier A (1998) Variação patogênica entre isolados de Magnaporthe grisea atacando triticale e trigo no estado do Paraná. Summa Phytopathol 24:119–125

    Google Scholar 

  • Mehta YR, Bassoi MC (1993) Guazatin Plus as a seed treatment bactericide to eradicate Xanthomona campestris pv. undulosa from wheat seeds. Seed Sci Technol 21:9–24

    Google Scholar 

  • Mehta YR, Gaudêncio C (1991) Effects of tillage practices and crop rotation on the epidemiology of some major wheat diseases, pp 266–283. In: Saunders DA (ed) Wheat for non-traditional warmer areas. Proc. Inter. Conf., CIMMYT, Mexico, p 549

    Google Scholar 

  • Mehta YR, Igarashi S (1978) Partial resistance in wheat against Puccinia recondita—a new view on its detection and measuring. Summa Phytopathol 5:90–100

    Google Scholar 

  • Mehta YR, Igarashi S (1985) Chemical control measures for major diseases of wheat with special attention to spot blotch. In: Wheats for more tropical environments. CIMMYT, Mexico, pp 196–203

    Google Scholar 

  • Mehta YR, Zadoks JC (1971) Uredospores production and sporulation period of Puccinia recondita f. sp. tritici on primary leaves. Neth J Plant Pathol 73:52–54

    Google Scholar 

  • Mehta YR, Igarashi S, Nazareno NRX (1978) Um novo critério para avaliar fungicidas contra doenças foliares do trigo. Summa Phytopathol 5:113–117

    Google Scholar 

  • Mehta YR, Nazareno NRX, Igarashi S (1979) Avaliação de perdas causadas pelas doenças do trigo. Summa Phytopathol 5:113–117

    Google Scholar 

  • Mehta YR, Riede CA, Campos LAC, Kohli MM (1992) Integrated management of major wheat diseases in Brazil: an example for the Southern Cone region of Latin America. Crop Prot 11:517–524

    Google Scholar 

  • Mehta YR, Campos LAC, Guzman E (1996) Resistencia genética de cultivares de trigo a Bipolares sorokiniana. Fitopatol Bras 21:455–459

    Google Scholar 

  • Moran MS, Inoue Y, Barnes EM (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61:319–346

    Google Scholar 

  • Muhovski Y (2012) Molecular and genetic characterization of Fusarium head blight resistance in winter wheat. Thesis Univ. Cath. Louvan, Faculte dês Sciences, Belgium

    Google Scholar 

  • Nelson RR (1971) Horizontal resistance in plants: concepts, controversies and application. In: Proc. Seminar on horizontal resistance to the blast disease of rice. CIAT, Cali, p 246

    Google Scholar 

  • Newson LD (1980) The next rung up on integrated pest management ladder. Bull Entomol Soc Am 26:369–374

    Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    CAS  Google Scholar 

  • Parlevliet JE (1981) Race-non-specific disease inheritance. In: Strategies for the control of cereal diseases. Blackwell, Oxford, pp 47–54

    Google Scholar 

  • Parlevliet JE (1985) Resistance of the non-specific type. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol 2. Academic, New York, pp 501–525

    Google Scholar 

  • Parlevliet JE (1988) Strategies for the utilization of partial resistance for the control of cereal rusts. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 48–62

    Google Scholar 

  • Parlevliet JE, van Ommeren A (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II, Relationship between field trials, microplot tests and latent period. Euphytica 24:293–303

    Google Scholar 

  • Parlevliet JE, Zadoks JC (1977) An integrated concept of disease resistance: a new view including horizontal and vertical resistance in plants. Euphytica 26:5–11

    Google Scholar 

  • Pavan W, Fernandes JMC, Reis JHD, Dalbosco J, Cervi CR (2011) Aplicacões no manejo de doenças. Trop Plant Pathol 36:19–22

    Google Scholar 

  • Pederson PN (1956) A routine method of testing seed barley for loose smut (Ustilago nuda Jeans). Rostr Proc Int Seed Test Assoc 21:2

    Google Scholar 

  • Peña RJ (2007) Current and future trends of wheat quality needs. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 411–424

    Google Scholar 

  • Person C (1959) Gene-for-gene relationship in host: parasite systems. Can J Bot 37:1101–1130

    Google Scholar 

  • Pomella AWV (2007) Tricoderma sp. No controle de doenças de plantas, o modelo soja. Fitopatol Bras 32:98–99 (Suplemento)

    Google Scholar 

  • Ponte ED, Fernandes JMC, Pierobom CR (2005) Factors affecting density of air-borne Gibberella zeae inoculum. Fitopatol Bras 30:55–60

    Google Scholar 

  • Prabhu AS, Fillippi MCC (2006) Brusone em arroz: controle genético, progresso e perspectivas. Embrapa Arroz e Feijão, Santa Antonio de Goiás, p 388

    Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–99

    Google Scholar 

  • Purwar S, Gupta SM, Kumar A (2012) Enzymes of phenylpropanoid metabolism involved in strengthening the structural barrier for providing genotype and stage dependent resistance to Karnal bunt in wheat. Am J Plant Sci 3:261–267

    CAS  Google Scholar 

  • Rajaram S, Pfeifer W, Singh R (1988) Developing bread wheats for acid soils through shuttle breeding. Wheat breeding for acid soils. Review of Brazilian/CIMMYT Collaboration, 1974-1976, CIMMYT, Mexico

    Google Scholar 

  • Rees RG, Platz GJ (1979) The occurrence and control of yellow spot of wheat in northeastern Australia. Aust J Exp Agric Anim Husb 19:369–372

    Google Scholar 

  • Reis EM (1985) Doenças do trigo III. Fusariose. Merck Sharp & Dohme, São Paulo

    Google Scholar 

  • Reis EM (1987) Patologia de sementes de cereais de inverno. CNDA, São Paulo, p 32

    Google Scholar 

  • Reis EM, Ambrosi I (1987) Efeito de rotação de culturas de inverno na densidade de inóculo de Helminthosporium sativum no solo, nas podridões radiculares e no rendimento do trigo. Fitopatol Bras 12:365–369

    Google Scholar 

  • Reis EM, Baier AC (1983) Relação de cereais de invernoàpodridão comum de raízes. Fitopatol Bras 8:277–281

    Google Scholar 

  • Reis EM, Santos HP (1989) Rotação de culturas XV. Efeitos sobre doenças radiculares e sobre o rendimento de grãos de trigo nos anos de 1984 a 1986. Fitopatol Bras 14:17–19

    Google Scholar 

  • Reis EM, Medeiros CA, Blum MC (1999) Wheat yield as affected by diseases. In: Satorre EH, Slafer GA (eds) Wheat ecology and physiology of yield determination. Food Products Press, London, pp 229–238

    Google Scholar 

  • Reis EM, Panisson E, Boller W (2002) Quantificação de danos causados pela giberela em cereais de inverno, na safras 2000, em Passo Fundo, RS. Fitopatol Bras 28:189–192

    Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A (1990) Maize (Zea mays L.) mediated wheat (Triticum aestivum L.) polyhaploid production using various crossing methods. Cereal Res Comm 18:339–343

    Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A, William MDHM (1992) Maize (Zea mays L.) mediated polyhaploid production in some Triticeae using a detached tiller method. J Genet Breed 46:335–346

    Google Scholar 

  • Roberts TL, Johnston AM (2007) Tillage intensity, crop rotation and fertilizer technology for sustainable wheat production North American Experience. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 175–187

    Google Scholar 

  • Robinson RA (1976) Plant pathosystems. Springer, Berlin, p 184

    Google Scholar 

  • Rode A, Hartman C, Benslimane A, Picard E, Quetier F (1987) Gametoclonal variation detected in the nuclear ribosomal DNA from doubled haploid lines of a spring wheat (Triticum aestivum L., cv. “César”). Theor Appl Genet 74:31–37

    CAS  PubMed  Google Scholar 

  • Rodrigues FA, Datnoff LE (2007) Silicon for the control of plant diseases. Fitopatol Bras 32:96–98

    Google Scholar 

  • Roelfs AP (1988a) Genetic control of pathogens in wheat stem rust. Annu Rev Phytopathol 26:351–367

    Google Scholar 

  • Roelfs AP (1988b) Resistance to leaf and stem rusts in wheat. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 10–22

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE, Broers LHM (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, p 81

    Google Scholar 

  • Romanenko AA, Bespalova LA, Kudryashov IN, Ablova IB (2007) A novel variety management strategy for precision farming. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 223–231

    Google Scholar 

  • Rubiales D, Moral A (2010) Resistance of Hordeum chilense against loose smuts of wheat and barley (Ustilago tritici and U. nuda) and its expression in amphiploids with wheat. Plant Breed 130. Blackwell Verlag GmbH. doi:10.1111/j:1439-0523

  • Sanderson FR (1964) Effect of leaf spot (Septoria tritici) in autumn-sown crops. New Zealand Wheat Rev 9:56–59

    Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537. doi:10.1007/sl2571-012-0200-5

    Google Scholar 

  • Scaléa M (2007) Plantio Direto. Aldeia Norte Editora, Passo Fundo, p 112

    Google Scholar 

  • Seebold KW, Datnoff LE, Correa-Victoria FJ, Kucharek TA, Snyder GH (2004) Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Dis 88:253–258

    CAS  Google Scholar 

  • Seevers PM, Daly JM (1970) Studies on wheat stem rust resistance controlled at the Sr6 locus. The role of phenolic compounds. Phytopathology 60:1322–1328

    CAS  Google Scholar 

  • Serge S, Ficke A, Jean-Noel A, Clayton H (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4:519–537

    Google Scholar 

  • Shaw MW, Osborne TM (2011) Geographic distribution of plant pathogens in response to climate change. Plant Pathol 60:31–43

    Google Scholar 

  • Silva IT, Oliveira JR, Rodrigues FA, Pereira SC, Andrade CCL, Silveira PR, Conceição MM (2010) Wheat resistance to bacterial leaf streak mediated by silicon. J Phytopathol 158:253–262

    CAS  Google Scholar 

  • Simón MR, Ayala FM, Golik SI, Terrile II, Cordo CA, Perollo AE, Moreno V, Chidichimo HO (2011) Integrated foliar disease management to prevent yield loss in Argentinean wheat production. Agron J 103:1441–1451

    Google Scholar 

  • Singh RP, Kinyua MG, Wanyera R, Njau P, Jin Y, Huerta-Espino J (2007) Spread of a highly virulent race of Puccinia graminis tritici in Eastern Africa. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 59–67

    Google Scholar 

  • Studdart GA, Echeverria HE, Casanovas EM (1997) Crop-pasture rotation for sustaining the quality and productivity of a type ariudoll. Soil Sci Soc Am J 61:1466–1472

    Google Scholar 

  • Tormen NR, Silva FDL, Fávera DD, Balardin RS (2012) Drop deposition on canopy and chemical control of Phakopsora pachyrhizi in soybean. Rev Bras Eng Agríc Ambient 16(7):802–808

    Google Scholar 

  • Torres E, Saraiva PR, Galerani PR (1994) Soil management and tillage operations. Plant Production and Protection Series. FAO, Rome, pp 145–152

    Google Scholar 

  • Tosa (1989) has demonstrated that gene-for-gene relationship exists between forme specialis of Erysiphae graminis and genera of gramineous plants. Genome 32(5):918–924. doi: 10.1139/g89-530

  • Turner NC, Molyneux N, Yang S, Xiong YC, Siddique HM (2011) Climate change in southwest Australia and north-west China: changes and opportunities for crop production. Crop Pasture Sci 62:445–456

    Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol 29:443–467

    CAS  PubMed  Google Scholar 

  • Van der Plank JE (1963) Plant diseases, epidemics and control. Academic, New York, p 349

    Google Scholar 

  • Van der Wal AF, Sheafer BL, Zadoks JC (1970) Interaction between Puccinia recondita f. sp. tritici and Septoria nodorum on wheat and its effect on yield. Neth J Plant Path 76:261–263

    Google Scholar 

  • VanEtten H, Matthews P, Tegtmeier K, Deitert MF, Stein JI (1989) Phytoalexins detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27:143–164

    CAS  PubMed  Google Scholar 

  • Vargas PR, Fernandes JMC, Piccinnini EC, Hunt LA (2000) Simulação de epidemia de giberela em trigo. Fitopatol Bras 25:661–663

    Google Scholar 

  • Vasil I, Vasil V (1986) Regeneration in cereal and other grass species. In: Vasil V, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 3. Praeger Press, New York, pp 125–150

    Google Scholar 

  • Vergenes DM, Renard ME, Duveiller E, Maraite H (2007) Effect of potash deficiency on host susceptibility to Cochliobolus sativus causing spot blotch on wheat. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 51–57

    Google Scholar 

  • Vilela L, Martha GB, Macedo MCM, Marchão RL, Guimarães Jr R, Palrolnik K, Maciel GA (2012) Sistemas de integração lavoura-pecuária na região do Cerrado. Pesq Agropec Bras 46(10):1127–1138

    Google Scholar 

  • Vog I, Wohner T, Richter K, Flachowsky H, Sundin GW et al (2013) Gene-for gene relationship in the host-pathogen system Malus × robusta 5—Erwinia amylovora. New Phytol 197(4):1262–1275. doi:10.1111/nph.12094

    Google Scholar 

  • Vurro M, Bonciani B, Vannacci G (2010) Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security 2:113–132

    Google Scholar 

  • Warrel E (1990) Reducing pesticide use: the Danish experience. Shell Agric 8:18–20

    Google Scholar 

  • Wiese MV (1996) Compendium of wheat diseases, 2nd edn. IPS Press, St. Paul, p 112

    Google Scholar 

  • Wilcoxson RD, Saari EE (1996) Bunt and smut diseases of wheat—concepts and methods of disease management. CIMMYT, México, p 66

    Google Scholar 

  • Wolfe MS (1988) The use of variety mixture to control diseases and stabilize yield. In: Simmunds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat, 29 June-1 July, 1987. CIMMYT, Mexico, pp 90–100

    Google Scholar 

  • Yorinori JT, Sinclair JB, Mehta YR, Mohan SK (1979) Seed pathology problems and progress. In: Proceedings of the first Latin-American workshop on seed pathology, vol 261. Held at IAPAR, Londrina, Brazil, 10–18 April 1977

    Google Scholar 

  • Zambolim L, Casa RT, Reis EM (2001) Sistema plantio direto e doenças em plantas. Fitopatol Bras 25:585–595

    Google Scholar 

  • Zancanaro L, Tessaro LC (2006) Manejo e conservação do solo. In: Moresco E (org). Algodão—Pesquisa e resultados para o campo. FACUAL, Cuiabá, pp 36–55l

    Google Scholar 

  • Zang J, Friebe B, Raupp WJ, Harrison AS, Gill BS (1996) Wheat embryogenesis and haploid production in wheat × maize hybrids. Euphytica 90:315–324

    Google Scholar 

  • Zang Y, Lubberstedt T, Xi M (2013) The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40(1):23–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mehta, Y.R. (2014). Pillars of Integrated Disease Management. In: Wheat Diseases and Their Management. Springer, Cham. https://doi.org/10.1007/978-3-319-06465-9_2

Download citation

Publish with us

Policies and ethics