Skip to main content

Quantum Mechanics, Its Classical Limit and Its Relation to Chemistry

  • Chapter
  • First Online:
Reductionism, Emergence and Levels of Reality

Abstract

In 1929 P.A.M. Dirac, one of the fathers of quantum mechanics, wrote the following celebrated sentence, which is often quoted in discussions of the reduction of chemistry to physics

Physics is mathematical, not because we know so much about the physical world, but because we know so little: it is only its mathematical properties that we can discover. For the rest our knowledge is negative.

B. Russell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Basically the solution of the Schrödinger equation for the hydrogen atom is the starting point of approximations for heavier atoms, e.g. using the Hartree-Fock or Thomas-Fermi methods.

  2. 2.

    One can say that for Heisenberg, in the context of quantum mechanics, the classical mechanics is a Kantian “a priori”.

  3. 3.

    Quite similar to the “metaphysical nomological pluralism” of N. Cartwright: different domains of nature are ruled by different systems of laws.

  4. 4.

    Just for notation simplicity we write the Wigner function \(W(q,p,t)\) for one-dimensional systems:

    $$\begin{aligned} W(q,p,t)={1 \over h} \int dq' \psi ^{*}(q+q',t) \psi (q-q',t) e^{i p q'/ \hbar } \end{aligned}$$

    where \(\psi (q,t)\) is the wave function which obeys to the Schrödinger equation. By integrating \(W(q,p,t)\) over either \(q\) or \(p\), one obtains the probability density for the other variable. Note that \(W(q,p,t)\) is not positive definite, sometimes it is called a “quasi-probability” distribution, however the expectation value of an operator \(G({\hat{q}}, {\hat{p}})\) can be written as

    $$\begin{aligned} \langle \hat{G} \rangle =\int \, dq \,dp G( q, p) W(q,p,t) . \end{aligned}$$
  5. 5.

    These are the exponential rates at which nearby trajctories separate, and at which information on the initial state is lost (which are strictly related concepts).

  6. 6.

    For instance, if we consider the passive advection of a scalar field \(\theta (\mathbf{x}, t)\) in a given velocity field \(\mathbf{u}(\mathbf{x}, t)\)

    $$\begin{aligned} \partial _t \theta +\mathbf{u}\cdot \nabla \theta = D \varDelta \theta , \end{aligned}$$

    it is easy to show that an initial uncertainty \(\delta \theta (\mathbf{x}, 0)\) cannot grow forever in time. On the other hand, the solution of this equation can be nontrivial (e.g. the spatial gradient of \(\theta (\mathbf{x}, t)\) can grow quickly) if the equation

    $$\begin{aligned} {d\mathbf{x} \over dt}= \mathbf{u}(\mathbf{x}, t) \end{aligned}$$

    is chaotic (Crisanti et al. 1994; Berry 1992).

  7. 7.

    Cited by Schweber (1990).

  8. 8.

    In a semi-serious fashion, we may claim that the symmetry breaking is somehow a solution of Buridan’s ass paradox. In a (large) magnetic system, the spins “choose” a preferred orientation, and, in an analogous way, the ass chooses one of the two haystacks, if they are large enough (formally infinite).

  9. 9.

    For some aspects, DFT is similar to the Boltzmann equation, which describes the one-particle distribution.

  10. 10.

    For instance, the Hohenberg-Kohn theorem states that the properties of the electronic ground state depend only on the density \(n(\mathbf{r})\) Jones and Gunnarsson (1989). But the determination of \(n(\mathbf{r})\) remains exceedingly difficult.

References

  • Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Berry, M.V.: Chaos and the Semiclassical Limit of Quantum Mechanics is the Moon There When Somebody Looks? In: Russell, R.J., Clayton, P., Wegter-McNelly, K., Polkinghorne, J. (eds.) Quantum Mechanics: Scientific Perspectives on Divine Action, pp. 41. Vatican Observatory CTNS Publications, (2001)

    Google Scholar 

  • Berry, M.V.: Classical limits. In: Gross, D., Henneaux, M., Sevrin, A. (eds.) The Theory of the Quantum World Proceedings of the 25th Solvay Conference on Physics, pp. 52 (2013)

    Google Scholar 

  • Berry, M.V.: True Quantum Chaos? an Instructive Example. In: Abe, Y., Horiuchi, H., Matsuyanagi, K. (eds), New Trends in Nuclear Collective Dynamics, pp. 183. Springer (1992)

    Google Scholar 

  • Berry, M.V.: Alisa Bokulich, Reexamining the quantum-classical relation: beyond reductionism and pluralism. Br. J. Philos. Sci. 61, 889 (2010)

    Google Scholar 

  • Bohr, N.: On the Application of the Quantum Theory to Atomic Structure. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  • Bohr, N.: Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge (1929)

    Google Scholar 

  • Bokulich, A.: Reexamining the Quantum-Classical Relation. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Bouguerra, M.L.: Linus Pauling: Génie Rebelle et Humaniste. Belin, Paris (2002)

    Google Scholar 

  • Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471 (1985)

    Article  ADS  Google Scholar 

  • Claverie, P., Jona-Lasinio, G.: Instability of tunneling and the concept of molecular structure in quantum mechanics. Phy. Rev. A 33(4), 2245 (1986)

    Article  ADS  Google Scholar 

  • Coste, J., Hénon, M.: Invariant cycles in the random mapping of \(n\) integers onto themselves. Comparison with Kauffman binary network. In Bienestock, et al., (eds.), Disordered Systems and Biological Organization, pp. 361. Springer, Berlin, (1986)

    Google Scholar 

  • Coulson, C.A.: Valence. Oxford University Press, Oxford (1960)

    Google Scholar 

  • Crisanti, A., Falcioni, M., Mantica, G., Vulpiani, A.: Applying algorithmic complexity to define chaos in the motion of complex systems. Phys. Rev. E 50(3), 1959 (1994)

    Article  ADS  Google Scholar 

  • Dirac, P.A.M.: Oral interviews with P.A.M. Dirac by Thomas S. Kuhn. In Archive for the History of Quantum Physics. Deposit at Harvard University, Cambridge (1962)

    Google Scholar 

  • Dirac P.A.M.: The relation of classical to quantum mechanics. In: Proceedings of the Second Canadian mathematical Congress, Vancouver, pp. 10. University of Toronto (1951)

    Google Scholar 

  • Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. Roy. Soc. London. Ser. A 123(792), 714 (1929)

    Article  ADS  MATH  Google Scholar 

  • Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press Oxford, Oxford (1958)

    MATH  Google Scholar 

  • Ezra, G.S.: Classical-quantum correspondence and the analysis of highly excited states: Periodic orbits, rational tori, and beyond. In Hase, W.L. (ed.) Advances in Classical Trajectory Methods, vol. 3, pp. 35. JAI Press (1998)

    Google Scholar 

  • Falcioni, M., Vulpiani, A., Mantica, G., Pigolotti, S.: Coarse-grained probabilistic automata mimicking chaotic systems. Phys. Rev. Lett. 91(4), 44101 (2003)

    Article  ADS  Google Scholar 

  • Ford, J., Mantica, G., Ristow, G.H.: The Arnol’d cat: failure of the correspondence principle. Phys. D: Nonlinear Phenomena 50(3), 493 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Heisenberg W.: Oral history interview of W. Heisenberg by Thomas Kuhn. In Archive for the History of Quantum Physics. Deposit at Harvard University, Cambridge, (1963)

    Google Scholar 

  • Heisenberg W.: The notion of a Closed Theory in Modern Science. In Heisenberg, W. (ed.) Across the Frontiers, pp. 39, Harper & Row, New York (1948)

    Google Scholar 

  • Jona-Lasinio, G.: Spontaneous symmetry breaking—variations on a theme. Prog. Theretical Phy. 124(5), 731 (2010)

    Article  ADS  MATH  Google Scholar 

  • Jones, R.O., Gunnarsson, O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689 (1989)

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Quantum Mechanics Non-Relativistic Theory. Pergamon Press Oxford, Oxford (1978)

    Google Scholar 

  • Mantica, G.: Quantum algorithmic integrability: The metaphor of classical polygonal billiards. Phy. Rev. E 61(6), 6434 (2000)

    Article  ADS  Google Scholar 

  • Pauling, L.: Nature Chemical Bond. Cornell University Press, New York (1928)

    Google Scholar 

  • Pauling, L.: The nature of the theory of resonance. In: Todd, A. (ed.) Perspectives in Organic Chemistry, p. 1. Interscience, London (1956)

    Google Scholar 

  • Pople, J.A.: Nobel lecture: Quantum chemical models. Rev. Mod. Phys. 71(5), 1267 (1999)

    Article  ADS  Google Scholar 

  • Porter, M.A., Cvitanovic, P.: Ground control to Niels Bohr: Exploring outer space with atomic physics. Not. AMS 52(9), 1020 (2005)

    MATH  MathSciNet  Google Scholar 

  • Primas, H.: Chemistry Quantum Mechanics and Reductionism Perspectives in Theoretical Chemistry. Springer, Berlin (1981)

    Book  Google Scholar 

  • Scerri, E.R.: Collected Papers on Philosophy of Chemistry. World Scientific, Singapore (2008)

    Book  Google Scholar 

  • Schweber, S.S.: The young John Clarke Slater and the development of quantum chemistry. Hist. Stud. Phy. Biol. Sci. 20(2), 339 (1990)

    Article  Google Scholar 

  • Thijssen, J.M.: Computational Physics. Cambridge Univ Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  • Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100(4), 1073 (1978)

    Article  Google Scholar 

  • Woolley, R.G.: Molecular shapes and molecular structures. Chem. phy. lett. 125(2), 200 (1986)

    Article  ADS  Google Scholar 

  • Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today, 44(10), (1991)

    Google Scholar 

  • Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phy. 75(3), 715 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Chibbaro .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chibbaro, S., Rondoni, L., Vulpiani, A. (2014). Quantum Mechanics, Its Classical Limit and Its Relation to Chemistry. In: Reductionism, Emergence and Levels of Reality. Springer, Cham. https://doi.org/10.1007/978-3-319-06361-4_6

Download citation

Publish with us

Policies and ethics