Skip to main content

Stochastic Multiscale Coupling of Inelastic Processes in Solid Mechanics

  • Conference paper
  • First Online:
Multiscale Modeling and Uncertainty Quantification of Materials and Structures

Abstract

Here we consider the inelastic nonlinear response of heterogeneous materials, possibly undergoing localised failure. We regard the material to be heterogeneous on many scales, but for simplicity we only look at one scale transition. The micro-scale is regarded as incompletely known and hence uncertain, therefore modelled probabilistically. Two alternative approaches are discussed: one for localised regions where a rather detailed micro-description is necessary to capture relevant effects, and the other in domains where it is accurate enough to define phenomenological models of ‘generalised standard materials’ on the macro-scale, which have to be identified via micro-scale computations. Apart from a proper transfer of mechanical quantities across scales, the same has to be achieved for the stochastic part of the model. Several main ingredients of the proposed approaches are discussed in detail, including micro-structure approximation with a structured mesh, random field representation, and Bayesian updating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulle A, Nonnenmacher A (2009) A short and versatile finite element multiscale code for homogenization problems. Comput Methods Appl Mech Eng 198:2839–2859

    Article  MATH  MathSciNet  Google Scholar 

  • Adler R (2008) Some new random field tools for spatial analysis. Stoch Environ Res Risk Assess 22:809–822

    Article  MathSciNet  Google Scholar 

  • Bažant ZP (2004) Probability distribution of energetic-statistical size effect in quasibrittle fracture. Probab Eng Mech 19:307–319

    Article  Google Scholar 

  • Ben Dhia H (1998) Problèmes mécaniques multi-échelles: la méthode Arlequin. C R Acad Sci Ser IIb 326:899–904

    MATH  Google Scholar 

  • Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62:1442–1462

    Article  MATH  Google Scholar 

  • Bornert M, Bretheau T, Gilormini P (2001) Homogéneisation en mécanique des matériaux. Hermes-Science, Paris

    Google Scholar 

  • Brancherie D, Ibrahimbegović A (2009) Novel anisotropic continuum-damage model representing localized failure. Part I: theoretical formulation and numerical implementation. Eng Comput 26(1–2):100–127

    MATH  Google Scholar 

  • Carpenteri A (2003) On the mechanics of quasi-brittle materials with a fractal microstructure. Eng Fract Mech 70:2321–2349

    Article  Google Scholar 

  • Colliat JB, Hautefeuille M, Ibrahimbegović A, Matthies H (2007) Stochastic approach to quasi-brittle failure and size effect. C R Acad Sci Mech (CRAS) 335:430–435

    MATH  Google Scholar 

  • Engquist WEB (2003) The heterogeneous multiscale methods. Commun Math Sci 1:87–133

    Article  MATH  MathSciNet  Google Scholar 

  • Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16:344–354

    Article  Google Scholar 

  • Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183: 309–330

    Article  MATH  Google Scholar 

  • Gilormini P (1995) A shortcoming of the classical non-linear extension of the self-consistent model. C R Acad Sci 320(116):115–122

    MATH  Google Scholar 

  • Hautefeuille M, Colliat J-B, Ibrahimbegović A, Matthies HG (2008) Multiscale zoom capabilities for damage assessment in structures. In: Ibrahimbegović A, Zlatar M (eds) Damage assessment and reconstruction after natural desasters and previous military activities. NATO-ARW series. Springer, Dordrecht

    Google Scholar 

  • Hautefeuille M, Melnyk S, Colliat J-B, Ibrahimbegović A (2009) Failure model for heterogeneous structures using structured meshes and accounting for probability aspects. Eng Comput 26(1–2):166–184

    Article  MATH  Google Scholar 

  • Hautefeuille M, Colliat J-B, Ibrahimbegović A, Matthies HG, Villon P (2012) A multi-scale approach to model localized failure with softening. Comput Struct 94–95:83–95

    Article  Google Scholar 

  • Ibrahimbegović A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, Berlin

    Book  Google Scholar 

  • Ibrahimbegović A, Brancherie D (2003) Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comput Mech 31:88–100

    Article  MATH  Google Scholar 

  • Ibrahimbegović A, Markovič D (2003) Strong coupling methods in multiphase and multiscale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192:3089–3107

    Article  MATH  Google Scholar 

  • Ibrahimbegović A, Matthies HG (2012) Probabilistic multiscale analysis of inelastic localized failure in solid mechanics. Comput Assist Methods Eng Sci 19:277–304

    Google Scholar 

  • Ibrahimbegović A, Melnyk S (2007) Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method. Comput Mech 40:149–155

    Article  MATH  Google Scholar 

  • Ibrahimbegović A, Wilson EL (1991) A modified method of incompatible modes. Commun Appl Numer Methods 7:187–194

    Article  MATH  Google Scholar 

  • Jaramillo S, Héctor E (2011) An analysis of strength of materials from postulates of “discourses and mathematical demonstrations relating to two new sciences” of Galileo Galilei. Lámpsakos 5:53–59 (in Spanish)

    Google Scholar 

  • Kassiotis C, Hautefeuille M (2008) coFeap’s manual. LMT-Cachan internal report, vol 2

    Google Scholar 

  • Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solid Struct 40:3647–3679

    Article  MATH  Google Scholar 

  • Krosche M, Matthies HG (2008) Component-based software realisations of Monte Carlo and stochastic Galerkin methods. Proc Appl Math Mech (PAMM) 8:10765–10766

    Article  Google Scholar 

  • Krosche M, Niekamp R, Matthies HG (2003) PLATON: a problem solving environment for computional steering of evolutionary optimisation on the grid. In: Bugeda G, Désidéri JA, Periaux J, Schoenauer M, Winter G (eds) Proceedings of the international conference on evolutionary methods for design, optimisation, and control with application to industrial problems (EUROGEN 2003), Barcelona. CIMNE

    Google Scholar 

  • Koutsourelakis P-S, Bilionis E (2010) Scalable Bayesian reduced-order models for high-dimensional multiscale dynamical systems. The Smithsonian/NASA Astrophysics Data System. arXiv: 1001.2753v2 [stat.ML]

    Google Scholar 

  • Kučerová A, Brancherie D, Ibrahimbegović A, Zeman J, Bitnar Z (2009) Novel anisotropic continuum-damage model representing localized failure. Part II: identification from tests under heterogeneous test fields. Eng Comput 26(1–2):128–144

    MATH  Google Scholar 

  • Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087

    Article  MATH  Google Scholar 

  • Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52:121–138

    Article  Google Scholar 

  • Lemaître J, Chaboche JL (1988) Mécanique des Matériaux solides. Dunod, Paris

    Google Scholar 

  • Lubliner J (1990) Plasticity theory. Macmillan, New York

    MATH  Google Scholar 

  • Markovič D, Ibrahimbegović A (2004) On micro-macro interface conditions for micro-scale based FEM for inelastic behavior of heterogeneous material. Comput Methods Appl Mech Eng 193:5503–5523

    Article  MATH  Google Scholar 

  • Markovič D, Niekamp R, Ibrahimbegović A, Matthies HG, Taylor RL (2005) Multi-scale modelling of heterogeneous structures with inelastic constitutive behaviour: part I – physical and mathematical aspects. Eng Comput 22:664–683

    Article  MATH  Google Scholar 

  • Matthies HG (1991) Computation of constitutive response. In: Wriggers P, Wagner W (eds) Nonlinear computational mechanics—state of the art. Springer, Berlin/New York

    Google Scholar 

  • Matthies HG (2007a) Quantifying uncertainty: modern computional representation of probability and applications. In: Ibrahimbegović A, Kožar I (eds) Extreme man-made and natural hazards in dynamic of structures. Springer, Dordrecht

    Google Scholar 

  • Matthies HG (2007b) Uncertainty quantification with stochastic finite elements. In: Stein E, de Borst R, Hughes TRJ (eds) Encyclopedia of computational mechanics. Wiley, Chichester. doi:10.1002/0470091355.ecm071/pdf. http://dx.doi.org/10.1002/0470091355.ecm071/pdf

  • Matthies HG (2008) Stochastic finite elements: computational approaches to stochastic partial differential equations. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 88:849–873

    Article  MATH  MathSciNet  Google Scholar 

  • Matthies HG, Rosić B (2008) Inelastic media under uncertainty: stochastic models and computational approaches. In: Reddy BD (ed) IUTAM symposium on theoretical, computational, and modelling aspects of inelastic media, Cape Town. IUTAM bookseries. Springer, Dordrecht

    Google Scholar 

  • Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72:300–317

    Article  MATH  Google Scholar 

  • Niekamp R, Matthies HG (2004) CTL: a C++ communication template library. GAMM Jahreshauptversammlung in Dresden, 21–27 Mar 2004

    Google Scholar 

  • Niekamp R, Markovič D, Ibrahimbegović A, Matthies HG, Taylor RL (2009) Multi-scale modelling of heterogeneous structures with inelastic constitutive behaviour: part II – software coupling implementation aspects. Eng Comput 26:6–28

    Article  MATH  Google Scholar 

  • Park KC, Felippa CA (2000) A variational principle for the formulation of partitioned structural systems. Int J Numer Methods Eng 47:395–418

    Article  MATH  MathSciNet  Google Scholar 

  • Park KC, Felippa CA, Rebel G (2002) A simple algorithm for localized construction of non-matching structural interfaces. Int J Numer Methods Eng 53:2117–2142

    Article  MATH  MathSciNet  Google Scholar 

  • Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1638–1685

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533

    Article  Google Scholar 

  • Rosić B, Matthies HG (2008) Computational approaches to inelastic media with uncertain parameters. J Serbian Soc Comput Mech 2:28–43

    Google Scholar 

  • Rosić BV, Matthies HG (2011) Stochastic Galerkin method for the elastoplasticity problem. In: Müller-Hoppe D, Löhr S, Reese S (eds) Recent developments and innovative applications in computational mechanics. Springer, Berlin, pp 303–310

    Google Scholar 

  • Rosić B, Matthies HG, Živković M, Ibrahimbegović A (2009) Formulation and computational application of inelastic media with uncertain parameters. In: Oñate E, Owen DRJ, Suárez B (eds) Proceedings of the Xth conference on computational plasticity (COMPLAS), Barcelona. CIMNE

    Google Scholar 

  • Rosić BV, Litvinenko A, Pajonk O, Matthies HG (2012) Sampling-free linear Bayesian update of polynomial chaos representations. J Comput Phys 231:5761–5787

    Article  MATH  MathSciNet  Google Scholar 

  • Rosić BV, Kučerová A, Sýkora J, Pajonk O, Litvinenko A, Matthies HG (2013) Parameter identification in a probabilistic setting. Eng Struct 50:179–196

    Article  Google Scholar 

  • Sab K, Lalaai I (1993) Une approche unifiée des effects d’échelle dans les matériaux quasi fragiles. C R Acad Sci Paris II 316(9):1187–1192

    MATH  Google Scholar 

  • Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Article  MATH  Google Scholar 

  • Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuity induced by strain softening solution in rate independent solids. Comput Mech 12:277–296

    Article  MATH  MathSciNet  Google Scholar 

  • Temizer I, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Method Appl Mech Eng 198:495–510

    Article  MATH  MathSciNet  Google Scholar 

  • Temizer I, Wriggers P (2011) An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures. Comput Method Appl Mech Eng 200:2639–2661

    Article  MATH  MathSciNet  Google Scholar 

  • Temizer I, Zohdi TI (2007) A numerical method for homogenization in non-linear elasticity. Comput Mech 40:281–298

    Article  MATH  Google Scholar 

  • Vanmarcke E (1988) Random fields: analysis and synthesis. MIT, Cambridge, MA

    Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18: 293–297

    MATH  Google Scholar 

  • Wilson EL (1974) The static condensation algorithm. Int J Numer Method Eng 8:199–203

    Article  Google Scholar 

  • Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves S (ed) Numerical and computer models in structural analysis. Academic, New York, pp 43–57

    Google Scholar 

  • Yaman IO, Hearn N, Aktan HM (2002) Active and non-active porosity in concrete. Part I: experimental evidence. Mater Struct 15:102–109

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method, vols 1 and 2, 6th edn. Elsevier Butterworth Heinemann, Oxford

    Google Scholar 

  • Zohdi TI, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the French Ministry of Research, the Franco-German University (DFH-UFA), and the German research foundation “Deutsche Forschungsgemeinschaft” (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann G. Matthies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Matthies, H.G., Ibrahimbegović, A. (2014). Stochastic Multiscale Coupling of Inelastic Processes in Solid Mechanics. In: Papadrakakis, M., Stefanou, G. (eds) Multiscale Modeling and Uncertainty Quantification of Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-06331-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06331-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06330-0

  • Online ISBN: 978-3-319-06331-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics