Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 473 Accesses

Abstract

This chapter details the novel techniques and applications to resolve and quantify transport properties via modulated luminescence arising from this work. These involve a class of modulated photoluminescence techniques sensitive to net dopant concentration, which could be combined with four-point-probe measurements for studies of majority carrier mobility, and a transit time approach to accurately determine minority carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The account given here is adapted from the corresponding original publications [1, 2].

  2. 2.

    Disregarding the injection dependence of the peak shift \(\tau _m\), which however does not affect the peak curvature sought here.

  3. 3.

    For the determination of \(\mathcal {R}_{\Phi }\), the effect of the injection dependence of the radiative recombination coefficient \(B\) on luminescence intensity \(\Phi (t)\) is to be taken into account.

  4. 4.

    The account given here is adapted from the corresponding original publication [43].

  5. 5.

    The modified Baek approach to surface recombination velocity, as used here, is detailed for silicon ingots in Sect. 8.4.2, and model curves \(R_B(S)|_{D_a}\) are shown in Fig. 8.19. Such curves can likewise be calculated for wafers on the basis of the steady-state solution of the continuity equation for wafers (rather than ingots) detailed in Sect. 3.2.2.

References

  1. J.A. Giesecke, M.C. Schubert, W. Warta, Measurement of net dopant concentration via dynamic photoluminescence. J. Appl. Phys. 112, 063704 (2012)

    Article  ADS  Google Scholar 

  2. J.A. Giesecke, D. Walter, F. Kopp, P. Rosenits, M.C. Schubert, W. Warta, Simultaneous determination of carrier lifetime and net dopant concentration of silicon wafers from photoluminescence, in Proceedings of the 35th IEEE PVSC (Honolulu, 2010), pp. 847–851

    Google Scholar 

  3. L.B. Valdes, Resistivity measurements on germanium for transistors. Proc. IRE 42, 420–427 (1954)

    Article  Google Scholar 

  4. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006)

    Google Scholar 

  5. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55, 2192–2193 (1967)

    Article  Google Scholar 

  6. F. Dannhäuser, Die Abhängigkeit der Trägerbeweglichkeit in Silicium von der Konzentration der freien Ladungsträger—I. Solid-State Electron. 15, 1371–1375 (1972)

    Article  ADS  Google Scholar 

  7. J. Krausse, Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger—II. Solid-State Electron. 15, 1377–1381 (1972)

    Article  ADS  Google Scholar 

  8. W.R. Thurber, R.L. Mattis, Y.M. Liu, J.J. Filliben, Resistivity-dopant density relationship for boron-doped silicon. J. Electrochem. Soc. 127, 2291–2294 (1980)

    Article  Google Scholar 

  9. W.R. Thurber, R.L. Mattis, Y.M. Liu, J.J. Filliben, Resistivity-dopant density relationship for phosphorus-doped silicon. J. Electrochem. Soc. 127, 1807–1812 (1980)

    Article  Google Scholar 

  10. W.R. Thurber, R.L. Mattis, Y.M. Liu, J.J. Filliben, The Relationship Between Resistivity and Dopant Density for Phosphorus- and Boron-Doped Silicon (US Department of Commerce, National Bureau of Standards, Washington, D.C., 1981)

    Google Scholar 

  11. G. Masetti, M. Severi, S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron Dev. 30, 764–769 (1983)

    Article  Google Scholar 

  12. D.B.M. Klaassen, A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid-State Electron. 35, 953–959 (1992)

    Article  ADS  Google Scholar 

  13. D.B.M. Klaassen, A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime. Solid-State Electron. 35, 961–967 (1992)

    Article  ADS  Google Scholar 

  14. F. Schindler, M.C. Schubert, A. Kimmerle, J. Broisch, S. Rein, W. Kwapil, W. Warta, Modeling majority carrier mobility in compensated crystalline silicon for solar cells. Sol. Energy Mater. Sol. Cells 106, 31–36 (2012)

    Article  Google Scholar 

  15. R.A. Sinton, A. Cuevas, M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization, in Proceedings of the 25th IEEE PVSC (Washington, D.C., 1996), pp. 457–460

    Google Scholar 

  16. R.A. Sinton, A. Cuevas, Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69, 2510–2512 (1996)

    Article  ADS  Google Scholar 

  17. M. Spitz, S. Rein, Impact of potential barriers at grain boundaries of multicrystalline silicon wafers on inductively coupled resistivity measurements, in Proceedings of the 26th EU PVSEC (Hamburg, 2011), pp. 338–343

    Google Scholar 

  18. T. Ambridge, C.R. Elliott, M.M. Faktor, The electrochemical characterization of n-type gallium arsenide. J. Appl. Electroch. 3, 1–15 (1973)

    Article  Google Scholar 

  19. E. Peiner, A. Schlachetzki, D. Krüger, Doping profile analysis in Si by electrochemical capacitance-voltage measurements. J. Electrochem. Soc. 142, 576–580 (1995)

    Article  Google Scholar 

  20. D. Hinken, A. Milsted, R. Bock, B. Fischer, K. Bothe, M. Schütze, J. Isenberg, A. Schulze, M. Wagner, Determination of the base-dopant concentration of large-area crystalline silicon solar cells. IEEE Trans. Electron Dev. 57, 2831–2837 (2010)

    Google Scholar 

  21. S. Rein, W. Kwapil, J. Geilker, G. Emanuel, M. Spitz, I. Reis, A. Weil, D. Biro, M. Glatthaar, A.K. Soiland, E. Enebakk, R. Tronstad, Impact of compensated solar-grade silicon on Czochralski silicon wafers and solar cells, in Proceedings of the 24th EU PVSEC (Hamburg, 2009), pp. 1140–1147

    Google Scholar 

  22. J. Geilker, W. Kwapil, I. Reis, S. Rein, Doping concentration and mobility in compensated material: comparison of different determination methods, in Proceedings of the 25th EU PVSEC (Valencia, 2010), pp. 1322–1327

    Google Scholar 

  23. R. Zierer, G. Gärtner, H.J. Möller, Determination of dopant concentrations in UMG-silicon by FTIR spectroscopy, hall- and resistivity measurements, in Proceedings of the 25th EU PVSEC (Valencia, 2010), pp. 1318–1321

    Google Scholar 

  24. B. Mitchell, T. Trupke, J.W. Weber, J. Nyhus, Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J. Appl. Phys. 109, 083111 (2011)

    Article  ADS  Google Scholar 

  25. S.Y. Lim, D. Macdonald, Measuring dopant concentrations in p-type silicon using iron-acceptor pairing monitored by band-to-band photoluminescence. Sol. Energy Mater. Sol. Cells 95, 2485–2489 (2011)

    Google Scholar 

  26. S.Y. Lim, S.P. Phang, T. Trupke, A. Cuevas, D. Macdonald, Dopant concentration imaging in crystalline silicon wafers by band-to-band photoluminescence. J. Appl. Phys. 110, 113712 (2011)

    Article  ADS  Google Scholar 

  27. Z. Hameiri, T. Trupke, N. Gao, R.A. Sinton, J.W. Weber, Effective bulk doping concentration of diffused and undiffused silicon wafers obtained from combined photoconductance and photoluminescence measurements. Prog. Photovoltaics: Res. Appl. 21, 942–949 (2013)

    Google Scholar 

  28. M. Tajima, Determination of boron and phosphorus concentration in silicon by photoluminescence analysis. Appl. Phys. Lett. 32, 719–721 (1978)

    Article  ADS  Google Scholar 

  29. P.M. Colley, E.C. Lightowlers, Calibration of the photoluminescence technique for measuring B, P and Al concentrations in Si in the range \(10^{12}\) to \(10^{15}\) \(\rm {cm^{-3}}\) using Fourier transform spectroscopy. Semicond. Sci. Technol. 2, 157 (1987)

    Article  ADS  Google Scholar 

  30. P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, S.W. Glunz, Diffusion lengths of silicon solar cells from luminescence images. J. Appl. Phys. 101, 123110 (2007)

    Article  ADS  Google Scholar 

  31. D. Macdonald, A. Cuevas, L.J. Geerligs, Measuring dopant concentrations in compensated p-type crystalline silicon via iron-acceptor pairing. Appl. Phys. Lett. 92, 202119 (2008)

    Article  ADS  Google Scholar 

  32. T. Trupke, R.A. Bardos, Photoluminescence: a surprisingly sensitive lifetime technique, in Proceedings of the 31st IEEE PVSC (Orlando, 2005), pp. 903–906

    Google Scholar 

  33. W. van Roosbroeck, W. Shockley, Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954)

    Article  ADS  Google Scholar 

  34. P.P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, E. Daub, Injection dependence of spontaneous radiative recombination in c-Si: experiment, theoretical analysis, and simulation, in Proceedings of the 5th International Conference on Numerical Simulation and Optoelectronic Devices, IEEE (Berlin, 2005), pp. 47–48

    Google Scholar 

  35. P.P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, E. Daub, Injection dependence of spontaneous radiative recombination in crystalline silicon: experimental verification and theoretical analysis. Appl. Phys. Lett. 88, 261901 (2006)

    Article  ADS  Google Scholar 

  36. J.A. Giesecke, M.C. Schubert, W. Warta, Self-sufficient minority carrier lifetime in silicon from quasi-steady-state photoluminescence. Phys. Stat. Sol. A 209, 2286–2290 (2012)

    Article  ADS  Google Scholar 

  37. J.A. Giesecke, S.W. Glunz, W. Warta, Understanding and resolving the discrepancy between differential and actual minority carrier lifetime. J. Appl. Phys. 113, 073706 (2013)

    Article  ADS  Google Scholar 

  38. J.A. Giesecke, S.W. Glunz, W. Warta, Determination of actual carrier lifetime from differential measurements. Energy Procedia 38, 59–65 (2013)

    Article  Google Scholar 

  39. D. Macdonald, T. Roth, P.N.K. Deenapanray, K. Bothe, P. Pohl, J. Schmidt, Formation rates of iron-acceptor pairs in crystalline silicon. J. Appl. Phys. 98, 083509 (2005)

    Article  ADS  Google Scholar 

  40. K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon. J. Appl. Phys. 99, 013701 (2006)

    Article  ADS  Google Scholar 

  41. D. Macdonald, F. Rougieux, A. Cuevas, B. Lim, J. Schmidt, M. Di Sabatino, L.J. Geerligs, Light-induced boron-oxygen defect generation in compensated p-type Czochralski silicon. J. Appl. Phys. 105, 093704 (2009)

    Google Scholar 

  42. S. Bowden, R.A. Sinton, Determining lifetime in silicon blocks and wafers with accurate expressions for carrier density. J. Appl. Phys. 102, 124501 (2007)

    Article  ADS  Google Scholar 

  43. J.A. Giesecke, F. Schindler, M. Bühler, M.C. Schubert, W. Warta, Accurate determination of minority carrier mobility in silicon from quasi-steady-state photoluminescence. J. Appl. Phys. 113, 213705 (2013)

    Article  ADS  Google Scholar 

  44. F. Schindler, J. Geilker, W. Kwapil, W. Warta, M.C. Schubert, Hall mobility in multicrystalline silicon. J. Appl. Phys. 110, 043722 (2011)

    Article  ADS  Google Scholar 

  45. J. Libal, S. Novaglia, M. Acciarri, S. Binetti, R. Petres, J. Arumughan, R. Kopecek, A. Prokopenko, Effect of compensation and of metallic impurities on the electrical properties of Cz-grown solar grade silicon. J. Appl. Phys. 104, 104507 (2008)

    Google Scholar 

  46. F. Schindler, J. Geilker, W. Kwapil, J. Giesecke, M.C. Schubert, W. Warta, Conductivity mobility and hall mobility in compensated multicrystalline silicon, in Proceedings of the 25th EU PVSEC (Valencia, 2010), pp. 2364–2368

    Google Scholar 

  47. J. Veirman, S. Dubois, N. Enjalbert, J.P. Garandet, D.R. Heslinga, M. Lemiti, Hall mobility reduction in single-crystalline silicon gradually compensated by thermal donors activation. Solid-State Electron. 54, 671–674 (2010)

    Article  ADS  Google Scholar 

  48. S. Dubois, J. Veirman, N. Enjalbert, F. Tanay, G. Raymond, Studies on compensated and UMG materials and solar cells, in Proceedings of the 21st Workshop on Crystalline Siicon Solar Cells and Modules (Beckenridge, 2011), pp. 19–26

    Google Scholar 

  49. M. Forster, E. Fourmond, R. Einhaus, H. Lauvray, J. Kraiem, M. Lemiti, Ga co-doping in Cz-grown silicon ingots to overcome limitations of B and P compensated silicon feedstock for PV applications. Phys. Stat. Sol. C 8, 678–681 (2011)

    Article  Google Scholar 

  50. J. Veirman, S. Dubois, N. Enjalbert, J.P. Garandet, M. Lemiti, Electronic properties of highly-doped and compensated solar-grade silicon wafers and solar cells. J. Appl. Phys. 109, 103711 (2011)

    Article  ADS  Google Scholar 

  51. B. Lim, F.E. Rougieux, D. Macdonald, K. Bothe, J. Schmidt, Generation and annihilation of boron-oxygen-related recombination centers in compensated p-and n-type silicon. J. Appl. Phys. 108, 103722 (2010)

    Article  ADS  Google Scholar 

  52. F.E. Rougieux, D. Macdonald, A. Cuevas, S. Ruffell, J. Schmidt, B. Lim, A.P. Knights, Electron and hole mobility reduction and hall factor in phosphorus-compensated p-type silicon. J. Appl. Phys. 108, 013706 (2010)

    Article  ADS  Google Scholar 

  53. E. Fourmond, M. Forster, R. Einhaus, H. Lauvray, J. Kraiem, M. Lemiti, Electrical properties of boron, phosphorus and gallium co-doped silicon. Energy Procedia 8, 349–354 (2011)

    Article  Google Scholar 

  54. B. Lim, M. Wolf, J. Schmidt, Carrier mobilities in multicrystalline silicon wafers made from UMG-Si. Phys. Stat. Sol. C 8, 835–838 (2011)

    Article  Google Scholar 

  55. M. Forster, F.E. Rougieux, A. Cuevas, B. Dehestru, A. Thomas, E. Fourmond, M. Lemiti, Incomplete ionization and carrier mobility in compensated p-type and n-type silicon. IEEE J. Photovoltaics 3, 108–113 (2013)

    Article  Google Scholar 

  56. J.R. Haynes, W. Shockley, The mobility and life of injected holes and electrons in germanium. Phys. Rev. 81, 835–843 (1951)

    Article  ADS  Google Scholar 

  57. M.B. Prince, Drift mobilities in semiconductors—II. Silicon. Phys. Rev. 93, 1204–1206 (1954)

    Article  ADS  Google Scholar 

  58. G.W. Ludwig, R.L. Watters, Drift and conductivity mobility in silicon. Phys. Rev. 101, 1699–1701 (1956)

    Google Scholar 

  59. M. Zerbst, W. Heywang, Zur Driftbeweglichkeit der Ladungsträger in hochreinem Silicium. Zeitschrift für Naturforschung A 11, 608–609 (1956)

    ADS  Google Scholar 

  60. D.D. Tang, F.F. Feng, M. Scheuermann, T.C. Chen, G. Sai-Halasz, Minority carrier transport in silicon, in Proceedings of the IEEE International Electron Devices Meeting (Los Angeles, 1986), pp. 20–23

    Google Scholar 

  61. J. Dziewior, D. Silber, Minority-carrier diffusion coefficients in highly doped silicon. Appl. Phys. Lett. 35, 170–172 (1979)

    Article  ADS  Google Scholar 

  62. A. Neugroschel, Minority-carrier diffusion coefficients and mobilities in silicon. IEEE Electron Dev. Lett. 6, 425–427 (1985)

    Article  Google Scholar 

  63. K. Misiakos, A. Neugroschel, Lifetime and diffusivity determination from frequency-domain transient analysis. IEEE Electron Dev. Lett. 8, 358–360 (1987)

    Article  Google Scholar 

  64. E. Susi, L. Passari, M. Merli, M.C. Carotta, Determination of minority carrier mobility in silicon from stationary and transient lifetime measurements. Phys. Stat. Sol. A 106, 583–587 (1988)

    Article  ADS  Google Scholar 

  65. D. Sontag, G. Hahn, P. Geiger, P. Fath, E. Bucher, Two-dimensional resolution of minority carrier diffusion constants in different silicon materials. Sol. Energy Mater. Sol. Cells 72, 533–539 (2002)

    Article  Google Scholar 

  66. A.B. Sproul, M.A. Green, A.W. Stephens, Accurate determination of minority carrier- and lattice scattering-mobility in silicon from photoconductance decay. J. Appl. Phys. 72, 4161–4171 (1992)

    Google Scholar 

  67. R. Brendel, Note on the interpretation of injection-level-dependent surface recombination velocities. Appl. Phys. A 60, 523–524 (1995)

    Article  ADS  Google Scholar 

  68. A.G. Aberle, J. Schmidt, R. Brendel, On the data analysis of light-biased photoconductance decay measurements. J. Appl. Phys. 79, 1491–1496 (1996)

    Article  ADS  Google Scholar 

  69. F.M. Schuurmans, A. Schönecker, A.R. Burgers, W.C. Sinke, Simplified evaluation method for light-biased effective lifetime measurements. Appl. Phys. Lett. 71, 1795–1797 (1997)

    Article  ADS  Google Scholar 

  70. J. Schmidt, Measurement of differential and actual recombination parameters on crystalline silicon wafers. IEEE Trans. Electron Dev. 46, 2018–2025 (1999)

    Article  ADS  Google Scholar 

  71. S.E. Swirhun, Y.H. Kwark, R.M. Swanson, Measurement of electron lifetime, electron mobility and band-gap narrowing in heavily doped p-type silicon, in Proceedings of the IEEE International Electron Devices Meeting (Los Angeles, 1986), pp. 24–27

    Google Scholar 

  72. D. Baek, S. Rouvimov, B. Kim, T.C. Jo, D.K. Schroder, Surface recombination velocity of silicon wafers by photoluminescence. Appl. Phys. Lett. 86, 112110 (2005)

    Article  ADS  Google Scholar 

  73. R.A. Sinton, T. Trupke, Limitations on dynamic excess carrier lifetime calibration methods. Prog. Photovoltaics: Res. Appl. 20, 246–249 (2012)

    Article  Google Scholar 

  74. M. Turek, Interplay of bulk and surface properties for steady-state measurements of minority carrier lifetimes. J. Appl. Phys. 111, 123703 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Giesecke .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giesecke, J. (2014). Conceptual Advances: Transport Properties. In: Quantitative Recombination and Transport Properties in Silicon from Dynamic Luminescence. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06157-3_9

Download citation

Publish with us

Policies and ethics