Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 624 Accesses

Abstract

This chapter outlines the theory of spontaneous emission of radiation by non-black bodies such as semiconductors (and particularly indirect semiconductors). The link between electronic properties and luminescent emission is drawn, and elementary approaches to electronic properties from silicon are classified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Isotropy of microscopic photon currents accounting for \(n_{\gamma }\) is explicitly not required here.

  2. 2.

    Note that the factor \(m\left( \varepsilon ,\varepsilon _{\gamma }\right) \) is identical for all transition rates of interest, involving the absorption rate, the stimulated emission rate, and the spontaneous emission rate.

  3. 3.

    Note that this expression accounts for isotropic radiation in all directions. Considering radiation only in a solid angle \(\Omega \) would require accounting for the ratio \(\frac{\Omega }{4\pi }\) as another factor on the right side of Eq. 4.15.

  4. 4.

    Some works set \(\mu _{\Gamma }=0\) under the specified conditions [1, 10].

  5. 5.

    This function contains a Bose factor, it carries the energy dependence due to the photon density of states (cf. Appendix A.4), and it contains the absorption coefficient and the inverse squared intrinsic carrier density.

  6. 6.

    Rigorously speaking, the refractive index contained in the velocity of light \(c^{\prime }\) also depends on photon energy \(\varepsilon _{\gamma }\). However, due to a weak energy dependence within the relevant energy range of the silicon luminescence spectrum, it is deemed sufficient to use its average value within this energy range.

  7. 7.

    Here, the effective solid angle of detection also accounts for refraction of light at the interface between a semiconductor and its surroundings, and for light scattering at nonplanar interfaces.

  8. 8.

    Note that this perception of the term intensity differs from the common physical perception of an energy current density.

  9. 9.

    For such photons, the light path in the bulk may substantially exceed its projection on the perpendicular.

  10. 10.

    E.g. the substrate surface corresponding to one pixel of a CCD camera.

  11. 11.

    As indicated in Eq. 4.29, the argument \(z\) of the reabsorption function must be transformed to \(d-z\) for luminescence detection from the substrate interface located at \(z=d\).

  12. 12.

    with derivative phase imaging applications by Melnikov et al. [67] and by Sun et al. [68].

References

  1. P. Würfel, S. Finkbeiner, E. Daub, Generalized Planck’s radiation law for luminescence via indirect transitions. Appl. Phys. A 60, 67–70 (1995)

    Article  ADS  Google Scholar 

  2. P. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  3. W. van Roosbroeck, W. Shockley, Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954)

    Article  ADS  Google Scholar 

  4. G. Kirchhoff, Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Annalen der Physik 185(2), 275–301 (1860)

    Google Scholar 

  5. P. Würfel, The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982)

    Article  ADS  Google Scholar 

  6. G. Lasher, F. Stern, Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553–A563 (1964)

    Article  ADS  Google Scholar 

  7. M. Planck, Theorie der Wärmestrahlung, (Barth, Leipzig, 1906)

    Google Scholar 

  8. H. Bowlden, Detailed balance in nonvertical transitions. J. Phys. Chem. Solids 3, 115–117 (1957)

    Article  ADS  Google Scholar 

  9. P.A. Temple, C.E. Hathaway, Multiphonon Raman spectrum of silicon. Phys. Rev. B 7, 3685–3697 (1973)

    Google Scholar 

  10. E. Daub, Photolumineszenz von Silizium, Ph.D. thesis, University of Karlsruhe (1995)

    Google Scholar 

  11. H. Schlangenotto, H. Maeder, W. Gerlach, Temperature dependence of the radiative recombination coefficient in silicon. Phys. Stat. Sol. A 21, 357–367 (1974)

    Article  ADS  Google Scholar 

  12. T. Trupke, M.A. Green, P. Würfel, P.P. Altermatt, A. Wang, J. Zhao, R. Corkish, Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 94, 4930–4937 (2003)

    Article  ADS  Google Scholar 

  13. M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300K. Prog. Photovoltaics Res. Appl. 3, 189–192 (1995)

    Article  Google Scholar 

  14. P.P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, E. Daub, Injection dependence of spontaneous radiative recombination in c-Si: experiment, theoretical analysis, and simulation, in Proceedings of the 5th International Conference on Numerical Simulation and Optoelectronic Devices, IEEE (Berlin, 2005), pp. 47–48

    Google Scholar 

  15. P.P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, E. Daub, Injection dependence of spontaneous radiative recombination in crystalline silicon: experimental verification and theoretical analysis. Appl. Phys. Lett. 88, 261901 (2006)

    Google Scholar 

  16. P. Rosenits, Electrical characterisation of crystalline silicon thin-film material. Ph.D. thesis, Universität Konstanz (2010).

    Google Scholar 

  17. J.A. Giesecke, R.A. Sinton, M.C. Schubert, S. Riepe, W. Warta, Determination of bulk lifetime and surface recombination velocity of silicon ingots from dynamic photoluminescence. IEEE J. Photovoltaics 3, 1311–1318 (2013)

    Article  Google Scholar 

  18. P. Würfel, T. Trupke, T. Puzzer, E. Schffer, W. Warta, S.W. Glunz, Diffusion lengths of silicon solar cells from luminescence images. J. Appl. Phys. 101, 123110 (2007)

    Article  ADS  Google Scholar 

  19. R.A. Sinton, T. Trupke, Limitations on dynamic excess carrier lifetime calibration methods. Prog. Photovoltaics: Res. Appl. 20, 246–249 (2012)

    Article  Google Scholar 

  20. J.A. Giesecke, M. Kasemann, W. Warta, Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images. J. Appl. Phys. 106, 014907 (2009)

    Article  ADS  Google Scholar 

  21. J.A. Giesecke, M. Kasemann, M.C. Schubert, P. Würfel, W. Warta, Separation of local bulk and surface recombination in crystalline silicon from luminescence reabsorption. Prog. Photovoltaics: Res. Appl. 18, 10–19 (2010)

    Article  Google Scholar 

  22. P. Gundel, F.D. Heinz, M.C. Schubert, J.A. Giesecke, W. Warta, Quantitative carrier lifetime measurement with micron resolution. J. Appl. Phys. 108, 033705 (2010)

    Article  ADS  Google Scholar 

  23. M. Tajima, Determination of boron and phosphorus concentration in silicon by photoluminescence analysis. Appl. Phys. Lett. 32, 719–721 (1978)

    Article  ADS  Google Scholar 

  24. P.M. Colley, E.C. Lightowlers, Calibration of the photoluminescence technique for measuring B, P and Al concentrations in Si in the range \(10^{12}\) to \(10^{15}\) \({\rm cm}^{-3}\) using fourier transform spectroscopy. Semicond. Sci. Technol. 2, 157 (1987)

    Article  ADS  Google Scholar 

  25. B. Mitchell, T. Trupke, J.W. Weber, J. Nyhus, Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J. Appl. Phys. 109, 083111 (2011)

    Article  ADS  Google Scholar 

  26. B. Mitchell, J.W. Weber, D. Walter, D. Macdonald, T. Trupke, On the method of photoluminescence spectral intensity ratio imaging of silicon bricks: advances and limitations. J. Appl. Phys. 112, 063116 (2012)

    Article  ADS  Google Scholar 

  27. M.P. Peloso, J.S. Lew, T. Trupke, M. Peters, R. Utama, A.G. Aberle, Evaluating the electrical properties of silicon wafer solar cells using hyperspectral imaging of luminescence. Appl. Phys. Lett. 99, 221915 (2011)

    Article  ADS  Google Scholar 

  28. I. Uchida, Observation of the recombination radiation from silicon pn junction. Jpn. J. Appl. Phys. 2, 561–564 (1963)

    Article  ADS  Google Scholar 

  29. D. Hinken, C. Schinke, S. Herlufsen, A. Schmidt, K. Bothe, R. Brendel, Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers. Rev. Sci. Instr. 82, 033706 (2011)

    Article  ADS  Google Scholar 

  30. T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl. Phys. Lett. 86, 262108 (2005)

    Article  ADS  Google Scholar 

  31. T. Trupke, R.A. Bardos, M.C. Schubert, W. Warta, Photoluminescence imaging of silicon wafers. Appl. Phys. Lett. 89, 044107 (2006)

    Article  ADS  Google Scholar 

  32. T. Trupke, E. Pink, R.A. Bardos, M.D. Abbott, Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging. Appl. Phys. Lett. 90, 093506 (2007)

    Article  ADS  Google Scholar 

  33. D. Hinken, K. Ramspeck, K. Bothe, B. Fischer, R. Brendel, Series resistance imaging of solar cells by voltage dependent electroluminescence. Appl. Phys. Lett. 91, 182104 (2007)

    Article  ADS  Google Scholar 

  34. H. Kampwerth, T. Trupke, J.W. Weber, Y. Augarten, Advanced luminescence based effective series resistance imaging of silicon solar cells. Appl. Phys. Lett. 93, 202102 (2008)

    Article  ADS  Google Scholar 

  35. B. Michl, M. Kasemann, J. Giesecke, M. Glatthaar, A. Schütt, J. Carstensen, H. Föll, S. Rein, W. Warta, H. Nagel, in Application of luminescence imaging based series resistance measurement methods in an industrial environment, in Proceedings of the 23rd EU PVSEC (Valencia, 2008), pp. 1176–1181

    Google Scholar 

  36. J. Haunschild, M. Glatthaar, M. Kasemann, S. Rein, E.R. Weber, Fast series resistance imaging for silicon solar cells using electroluminescence. Phys. Stat. Sol. (RRL) 3, 227–229 (2009)

    Article  Google Scholar 

  37. D. Kiliani, A. Herguth, G. Hahn, V. Rutka, M. Junk, in Fitting of lateral resistances in silicon solar cells to electroluminescence images, in Proceedings of the 24th EU PVSEC (Hamburg, 2009), pp. 2088–2090

    Google Scholar 

  38. M. Glatthaar, J. Haunschild, M. Kasemann, J. Giesecke, W. Warta, S. Rein, Spatially resolved determination of dark saturation current and series resistance of silicon solar cells. Phys. Stat. Sol. (RRL) 4, 13–15 (2010)

    Article  Google Scholar 

  39. M. Kasemann, D. Grote, B. Walter, W. Kwapil, T. Trupke, Y. Augarten, R.A. Bardos, E. Pink, M.D. Abbott, W. Warta, Luminescence imaging for the detection of shunts on silicon solar cells. Prog. Photovoltaics: Res. Appl. 16, 297–305 (2008)

    Article  Google Scholar 

  40. Y. Augarten, T. Trupke, M. Lenio, J. Bauer, O. Breitenstein, J. Weber, R. Bardos, Luminescence shunt imaging: qualitative and quantitative shunt images using photoluminescence imaging, in Proceedings of the 24th EU PVSEC (Hamburg, 2009), pp. 27–31

    Google Scholar 

  41. S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, R. Brendel, Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon. Phys. Stat. Sol. (RRL) 2, 245–247 (2008)

    Article  Google Scholar 

  42. D. Hinken, K. Bothe, K. Ramspeck, S. Herlufsen, R. Brendel, Determination of the effective diffusion length of silicon solar cells from photoluminescence. J. Appl. Phys. 105, 104516 (2009)

    Article  ADS  Google Scholar 

  43. J.A. Giesecke, M.C. Schubert, B. Michl, F. Schindler, W. Warta, Minority carrier lifetime imaging of silicon wafers calibrated by quasi-steady-state photoluminescence. Solar Energy Mater. Solar Cells 95, 1011–1018 (2011)

    Article  Google Scholar 

  44. R. Brendel, Note on the interpretation of injection-level-dependent surface recombination velocities. Appl. Phys. A 60, 523–524 (1995)

    Article  ADS  Google Scholar 

  45. A.G. Aberle, J. Schmidt, R. Brendel, On the data analysis of light-biased photoconductance decay measurements. J. Appl. Phys. 79, 1491–1496 (1996)

    Article  ADS  Google Scholar 

  46. F.M. Schuurmans, A. Schönecker, A.R. Burgers, W.C. Sinke, Simplified evaluation method for light-biased effective lifetime measurements. Appl. Phys. Lett. 71, 1795–1797 (1997)

    Google Scholar 

  47. J. Schmidt, Measurement of differential and actual recombination parameters on crystalline silicon wafers. IEEE Trans. Electron Dev. 46, 2018–2025 (1999)

    Article  ADS  Google Scholar 

  48. J.A. Giesecke, S.W. Glunz, W. Warta, Understanding and resolving the discrepancy between differential and actual minority carrier lifetime. J. Appl. Phys. 113, 073706 (2013)

    Article  ADS  Google Scholar 

  49. A. Ehrhardt, W. Wettling, A. Bett, Transient photoluminescence decay study of minority carrier lifetime in GaAs heteroface solar cell structures. Appl. Phys. A 53, 123–129 (1991)

    Article  ADS  Google Scholar 

  50. J. Cui, H. Wang, F. Gan, X. Huang, Z. Cai, Q. Li, Z. Yu, Picosecond transient photoluminescence spectra of ZnSe–ZnS strained-layer superlattices grown on GaAs (001) by molecular beam epitaxy. Appl. Phys. Lett. 61, 1540–1542 (1992)

    Article  ADS  Google Scholar 

  51. B. Monemar, P.P. Paskov, J.P. Bergman, G. Pozina, A.A. Toropov, T.V. Shubina, T. Malinauskas, A. Usui, Transient photoluminescence of shallow donor bound excitons in GaN. Phys. Rev. B 82, 235202 (2010)

    Article  ADS  Google Scholar 

  52. S. Finkbeiner, J. Weber, M. Rosenbauer, M. Stutzmann, Transient photoluminescence decay in porous silicon and siloxene. J. Lumin. 57, 231–234 (1993)

    Article  Google Scholar 

  53. T. Trupke, R.A. Bardos, F. Hudert, P.Würfel, J. Zhao, A. Wang, M.A. Green, Effective excess carrier lifetimes exceeding 100 milliseconds in float zone silicon determined from photoluminescence, in Proceedings of the 19th EU PVSEC (Paris, 2004), pp. 758–761

    Google Scholar 

  54. T. Trupke, R.A. Bardos, in Photoluminescence: a surprisingly sensitive lifetime technique, in Proceedings of the 31st IEEE PVSC (Orlando, 2005), pp. 903–906

    Google Scholar 

  55. K. Wang, M.A. Green, H. Kampwerth, Transient photoconductance and photoluminescence from thick silicon wafers and bricks: analytical solutions. Solar Energy Mater. Solar Cells 111, 189–192 (2013)

    Article  Google Scholar 

  56. S. Herlufsen, K. Ramspeck, D. Hinken, A. Schmidt, J. Müller, K. Bothe, J. Schmidt, R. Brendel, Photoluminescence lifetime imaging for the characterisation of silicon wafers. Phys. Stat. Sol. (RRL) 5, 25–27 (2011)

    Article  Google Scholar 

  57. S. Herlufsen, K. Bothe, J. Schmidt, R. Brendel, S. Siegmund, Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks. Solar Energy Mater. Solar Cells 106, 42–46 (2012)

    Article  Google Scholar 

  58. K. Ramspeck, S. Reissenweber, J. Schmidt, K. Bothe, R. Brendel, Dynamic carrier lifetime imaging of silicon wafers using an infrared-camera-based approach. Appl. Phys. Lett. 93, 102104 (2008)

    Article  ADS  Google Scholar 

  59. K. Ramspeck, K. Bothe, J. Schmidt, R. Brendel, Combined dynamic and steady-state infrared camera based carrier lifetime imaging of silicon wafers. J. Appl. Phys. 106, 114506 (2009)

    Article  ADS  Google Scholar 

  60. D. Kiliani, G. Micard, B. Raabe, G. Hahn, Time resolved photoluminescence imaging for carrier lifetime mapping of silicon wafers, in Proceedings of the 25th EU PVSEC (Valencia, 2010), pp. 1363–1366

    Google Scholar 

  61. D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, G. Hahn, Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging. J. Appl. Phys. 110, 054508 (2011)

    Article  ADS  Google Scholar 

  62. D. Kiliani, A. Herguth, G. Micard, J. Ebser, G. Hahn, Time-resolved photoluminescence imaging with electronic shuttering using an image intensifier unit. Solar Energy Mater. Solar Cells 106, 55–59 (2012)

    Article  Google Scholar 

  63. N.A. Tolstoi, P.P. Feofilov, Novel method to investigate the processes of rise and decay of luminescence (translation). Bull. Russ. Acad. Sci. Phys. 13, 211–217 (1949)

    Google Scholar 

  64. D. Guidotti, J.S. Batchelder, J.A. Van Vechten, A. Finkel, Nondestructive depth profiling of carrier lifetimes in full silicon wafers. Appl. Phys. Lett. 48, 68–70 (1986)

    Article  ADS  Google Scholar 

  65. D. Guidotti, J.S. Batchelder, A. Finkel, P.D. Gerber, J.A. Van Vechten, Modeling of luminescence phase delay for nondestructive characterization of Si wafers. J. Appl. Phys. 66, 2542–2553 (1989)

    Google Scholar 

  66. A. Mandelis, J. Batista, D. Shaughnessy, Infrared photocarrier radiometry of semiconductors: physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects. Phys. Rev. B 67, 205208 (2003)

    Article  ADS  Google Scholar 

  67. A. Melnikov, A. Mandelis, J. Tolev, P. Chen, S. Huq, Infrared lock-in carrierography (photocarrier radiometric imaging) of Si solar cells. J. Appl. Phys. 107, 114513 (2010)

    Article  ADS  Google Scholar 

  68. Q. Sun, A. Melnikov, A. Mandelis, Quantitative self-calibrating lock-in carrierographic lifetime imaging of silicon wafers. Appl. Phys. Lett. 101, 242107 (2012)

    Article  ADS  Google Scholar 

  69. T. Trupke, R.A. Bardos, M.D. Abbott, Self-consistent calibration of photoluminescence and photoconductance lifetime measurements. Appl. Phys. Lett. 87, 184102 (2005)

    Article  ADS  Google Scholar 

  70. R. Brüggemann, S. Reynolds, Modulated photoluminescence studies for lifetime determination in amorphous-silicon passivated crystalline-silicon wafers. J. Non-Cryst. Solids 352, 1888–1891 (2006)

    Google Scholar 

  71. A.R. Engler, C.J. Kevane, Direct reading minority carrier lifetime measuring apparatus. Rev. Sci. Instr. 28, 548–551 (1957)

    Article  ADS  Google Scholar 

  72. J.A. Giesecke, S.W. Glunz, W. Warta, Determination of actual carrier lifetime from differential measurements. Energy Procedia 38, 59–65 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Giesecke .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giesecke, J. (2014). Luminescence of Silicon. In: Quantitative Recombination and Transport Properties in Silicon from Dynamic Luminescence. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06157-3_4

Download citation

Publish with us

Policies and ethics