Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 494 Accesses

Abstract

This chapter discusses the very fundamental working principle of a solar cell. It is intended to briefly motivate the relevance of carrier recombination and carrier transport to solar cell operation without going into technological detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The main lines of reasoning in this section draw on full derivations given in [1].

  2. 2.

    This approximation is deemed accurate for \(|\varepsilon _F - \varepsilon _{C/V}|\gtrsim 3k_BT.\)

  3. 3.

    Here, \(\Delta n_e = \Delta n_h = \Delta n\) is assumed.

  4. 4.

    This derivation proceeds along the lines of a derivation given in [6].

  5. 5.

    \(a_{e/h}\) enable a dimensionless logarithmic argument and incorporate a constant offset of \(\mu _{c,e/h}.\)

  6. 6.

    Derivation proceeds along the lines of [6].

  7. 7.

    Note that the maximum of the detailed balance limit (without concentration) as a function of band gap energy \(\varepsilon _G\) is shifted to \({\sim }1.3\,\mathrm{{eV}}\) as opposed to the maximum at \({\sim }1.1\,\mathrm{{eV}}\) encountered for the ultimate efficiency limit.

References

  1. N.W. Ashcroft, D.N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  2. M.A. Green, Intrinsic concentration, effective densities of states, and effective mass in Silicon. J. Appl. Phys. 67, 2944–2954 (1990)

    Article  ADS  Google Scholar 

  3. A.B. Sproul, M.A. Green, Improved Value for the Silicon intrinsic carrier concentration from 275 to 375 K. J. Appl. Phys. 70, 846–854 (1991)

    Article  ADS  Google Scholar 

  4. A.B. Sproul, M.A. Green, Intrinsic carrier concentration and minority-carrier mobility of Silicon from 77 to 300 K. J. Appl. Phys. 73, 1214–1225 (1993)

    Article  ADS  Google Scholar 

  5. P.P. Altermatt, A. Schenk, F. Geelhaar, G. Heiser, Reassessment of the intrinsic carrier density in Crystalline Silicon in view of band-gap narrowing. J. Appl. Phys. 93, 1598–1604 (2003)

    Article  ADS  Google Scholar 

  6. P. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  7. P.T. Landsberg, G. Tonge, Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980)

    Article  ADS  Google Scholar 

  8. P. Baruch, A. De Vos, P.T. Landsberg, J.E. Parrott, On some thermodynamic aspects of photovoltaic Solar Energy conversion. Solar Energy Mater. Solar Cells 36, 201–222 (1995)

    Article  Google Scholar 

  9. D.R. Williams, Sun Fact Sheet, NASA (2012). http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html

  10. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Google Scholar 

  11. R.N. Hall, Germanium rectifier characteristics. Phys. Rev. 83, 228 (1951)

    Google Scholar 

  12. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  ADS  MATH  Google Scholar 

  13. J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8 % efficient “Honeycomb” textured multicrystalline and 24.4 % monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998)

    Google Scholar 

  14. M.A. Green, The path to 25 % silicon solar sell efficiency: history of silicon cell evolution. Prog. Photovoltaics: Res. Appl. 17, 183–189 (2009)

    Google Scholar 

  15. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 41). Prog. Photovoltaics: Res. Appl. 21, 1–11 (2012)

    Google Scholar 

  16. J. Benick, B. Hoex, M.C.M. Van de Sanden, W.M.M. Kessels, O. Schultz, S.W. Glunz, High efficiency n-type Si solar cells on AlO-passivated Boron Emitters. Appl. Phys. Lett. 92, 253504 (2008)

    Google Scholar 

  17. P.J. Cousins, D.D. Smith, H.C. Luan, J. Manning, T.D. Dennis, A. Waldhauer, K.E. Wilson, G. Harley, W.P. Mulligan, Generation 3: improved performance at lower cost, in Proceedings of the 35th IEEE PVSC (Honolulu, 2010), pp. 275–278

    Google Scholar 

  18. B. Michl, M. Rüdiger, J.A. Giesecke, M. Hermle, W. Warta, M.C. Schubert, Efficiency limiting bulk recombination in multicrystalline silicon solar cells. Solar Energy Mater. Solar Cells 98, 441–447 (2012)

    Google Scholar 

  19. D. Macdonald, T. Roth, P.N.K. Deenapanray, K. Bothe, P. Pohl, J. Schmidt, Formation rates of Iron-Acceptor pairs in crystalline Silicon. J. Appl. Phys. 98, 083509 (2005)

    Article  ADS  Google Scholar 

  20. K. Bothe, J. Schmidt, Electronically activated Boron-Oxygen-related recombination centers in crystalline Silicon. J. Appl. Phys. 99, 013701 (2006)

    Article  ADS  Google Scholar 

  21. D.B.M. Klaassen, A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid State Electron. 35, 953–959 (1992)

    Article  ADS  Google Scholar 

  22. D.B.M. Klaassen, A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime. Solid State Electron. 35, 961–967 (1992)

    Article  ADS  Google Scholar 

  23. A.B. Sproul, M.A. Green, A.W. Stephens, Accurate determination of minority carrier- and lattice scattering-mobility in Silicon from photoconductance decay. J. Appl. Phys. 72, 4161–4171 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Giesecke .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giesecke, J. (2014). Introduction to Solar Cell Operation. In: Quantitative Recombination and Transport Properties in Silicon from Dynamic Luminescence. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06157-3_2

Download citation

Publish with us

Policies and ethics