Skip to main content

On Representations of Abstract Systems with Partial Inputs and Outputs

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8402))

Abstract

We consider a class of mathematical models called blocks which generalize some input-output models which appear in mathematical systems theory, control theory, signal processing. A block maps partial functions of time to nonempty sets of partial functions of time. A class of strongly nonanticipative blocks can be considered as an analog of the class of causal time systems studied by M. Mesarovic and Y. Takahara. The behavior of a strongly nonanticipative block can be represented using an abstract dynamical system called Nondeterministic Complete Markovian System (NCMS) which is close to the notion of a solution system by O. Hájek. We show that conversely, each initial input-output NCMS (i.e. NCMS with inputs and outputs) is a representation of a strongly nonanticipative block. This result generalizes a link between causality and the existence of state-space representations that exists in several variants of mathematical systems theory to models with partial inputs and outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baheti, R., Gill, H.: Cyber-physical systems. The Impact of Control Technology, 161–166 (2011)

    Google Scholar 

  2. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical systems approach. Lulu.com (2013)

    Google Scholar 

  3. Zadeh, L.A., Desoer, C.A.: Linear System Theory: The State Space Approach. McGraw-Hill (1963)

    Google Scholar 

  4. Zadeh, L.A.: The concepts of system, aggregate, and state in system theory (1969)

    Google Scholar 

  5. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory (Pure & Applied Mathematics S.). McGraw-Hill Education (1969)

    Google Scholar 

  6. Padulo, L., Arbib, M.: System theory: a unified state-space approach to continuous and discrete systems. W.B. Saunders Company (1974)

    Google Scholar 

  7. Klir, G.J.: Facets of Systems Science (IFSR International Series on Systems Science and Engineering). Springer (2001)

    Google Scholar 

  8. Wymore, A.W.: A mathematical theory of systems engineering: the elements. Wiley (1967)

    Google Scholar 

  9. Mesarovic, M.D., Takahara, Y.: Abstract Systems Theory. LNCIS, vol. 116. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  10. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic Press (2000)

    Google Scholar 

  11. Matrosov, V.M., Anapolskiy, L., Vasilyev, S.: The method of comparison in mathematical systems theory. Nauka, Novosibirsk (1980) (in Russian)

    Google Scholar 

  12. Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems 36(3), 259–294 (1991)

    Google Scholar 

  13. Polderman, J.W., Willems, J.C.: Introduction to mathematical systems theory: a behavioral approach. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Lin, Y.: General systems theory: A mathematical approach. Springer (1999)

    Google Scholar 

  15. Seising, R.: Cybernetics, system(s) theory, information theory and fuzzy sets and systems in the 1950s and 1960s. Information Sciences 180(23), 4459–4476 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, X., Matsikoudis, E., Lee, E.A.: Modeling timed concurrent systems. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Matsikoudis, E., Lee, E.A.: On fixed points of strictly causal functions. Technical Report UCB/EECS-2013-27, EECS Department, University of California, Berkeley (April 2013)

    Google Scholar 

  18. Ball, J.: Finite time blow-up in nonlinear problems. Nonlinear Evolution Equations, 189–205 (1978)

    Google Scholar 

  19. Galaktionov, V., Vazquez, J.L.: The problem of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems 8(2), 399–433 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Goriely, A.: Integrability and nonintegrability of dynamical systems, vol. 19. World Scientific Publishing Company (2001)

    Google Scholar 

  21. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems 29(2), 28–93 (2009)

    Google Scholar 

  22. Henzinger, T.A.: The theory of hybrid automata. In: Proc. Eleventh Annual IEEE Symp. Logic in Computer Science, LICS 1996, pp. 278–292 (1996)

    Google Scholar 

  23. Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. International Journal of Robust and Nonlinear Control 11(5), 435–451 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ivanov, I.: An abstract block formalism for engineering systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G., Zavileysky, M., Kravtsov, H., Kobets, V., Peschanenko, V.S. (eds.) ICTERI. CEUR Workshop Proceedings, vol. 1000, pp. 448–463. CEUR-WS.org (2013)

    Google Scholar 

  25. Ivanov, I.: On existence of total input-output pairs of abstract time systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 308–331. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Hájek, O.: Theory of processes, i. Czechoslovak Mathematical Journal 17, 159–199 (1967)

    MathSciNet  Google Scholar 

  27. Windeknecht, T.: Mathematical systems theory: Causality. Mathematical Systems Theory 1(4), 279–288 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nikitchenko, N.S.: A composition nominative approach to program semantics. Technical report, IT-TR 1998-020, Technical University of Denmark (1998)

    Google Scholar 

  29. Ivanov, I.: A criterion for existence of global-in-time trajectories of non-deterministic markovian systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2012. CCIS, vol. 347, pp. 111–130. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. Frankowska, H.: Optimal control under state constraints. In: Proceedings of the International Congress of Mathematicians, Hyderabad, India, August 19-27, pp. 2915–2942 (2010)

    Google Scholar 

  31. Ivanov, I.: Investigation of abstract systems with inputs and outputs as partial functions of time. PhD thesis, Université Paul Sabatier, France and Taras Shevchenko National University of Kyiv, Ukraine (to appear, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ivanov, I. (2014). On Representations of Abstract Systems with Partial Inputs and Outputs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2014. Lecture Notes in Computer Science, vol 8402. Springer, Cham. https://doi.org/10.1007/978-3-319-06089-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06089-7_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06088-0

  • Online ISBN: 978-3-319-06089-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics