Skip to main content

Strategies for Generating Well Centered Tetrahedral Meshes on Industrial Geometries

  • Chapter
New Challenges in Grid Generation and Adaptivity for Scientific Computing

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

Abstract

This paper outlines some recent developments in the process of generating well centered tetrahedral meshes. A well centered tetrahedron contains its circumcentre, which is a basic property required for a valid co-volume discretisation. Although most work in this area has focussed on improving meshes generated using classical techniques, in this paper we consider modification of the generation procedure itself. A simple lattice point insertion technique is introduced and the potential of the technique for generating well centered meshes is demonstrated. This is accomplished by comparing, for some complex geometries, the meshes generated with the meshes created by a standard Delaunay mesh refinement technique. Despite the simplicity of the lattice point insertion method, the comparison is found to be favourable and the method is shown to produce good well centered elements in the vicinity of the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  2. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  3. Sazonov, I., Wang, D., Hassan, O., Morgan, K., Weatherill, N.: A stitching method for the generation of unstructured meshes for use with co-volume solution techniques. Comput. Methods Appl. Mech. Eng. 195, 1826–1845 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Walton, S., Hassan, O., Morgan, K.: Reduced order mesh optimisation using proper orthogonal decomposition and a modified cuckoo search. Int. J. Numer. Methods Eng. 93, 527–550 (2013)

    Article  MathSciNet  Google Scholar 

  5. Walton, S.: Gradient free optimisation in selected engineering applications. PhD Thesis, Swansea University (2013)

    Google Scholar 

  6. Walton, S., Hassan, O., Morgan, K.: Modified cuckoo search: A new gradient free optimisation algorithm. Chaos Solitons Fractals 44, 710–718 (2011)

    Article  Google Scholar 

  7. Xie, Z.Q., Hassan, O., Morgan, K.: Tailoring unstructured meshes for use with a 3D time domain co-volume algorithm for computational electromagnetics. Int. J. Numer. Methods Eng. 87, 48–65 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sazonov, I., Hassan, O., Morgan, K., Weatherill, N.P.: Smooth Delaunay–Voronoi dual meshes for co-volume integration schemes. In: Pebay, P.P. (ed.) Proceedings of the 15th International Meshing Roundtable, pp. 529–541. Springer, Berlin (2006)

    Chapter  Google Scholar 

  9. Naylor, D.J.: Filling space with tetrahedra. Int. J. Numer. Methods Eng. 44, 1383–1395 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eppstein, D., Sullivan, J.M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Comput. Geom. Theory Appl. 27, 237–255 (2004)

    Article  MATH  Google Scholar 

  11. Sazonov, I., Hassan, O., Morgan, K., Weatherill, N.P.: Generating the Voronoï–Delaunay dual diagram for co-volume integration schemes. In: Gold, C.M. (ed.) Proceedings of the 4th International Symposium on Voronoï Diagrams in Science and Engineering, ISPRS, IEEE CPS, pp. 199–204 (2007)

    Chapter  Google Scholar 

  12. van der Zee, E., Hirani, A., Guoy, D.: Triangulation of simple 3D Shapes with well-centered tetrahedra. In: Garimella, R. (ed.) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin (2008)

    Google Scholar 

  13. van der Zee, E., Hirani, A., Guoy, D., Ramos, E.: Well-centered triangulation. SIAM J. Sci. Comput. 31, 4497–4523 (2010)

    Article  Google Scholar 

  14. Yan, D.-M., Wang, W., Lévy, B., Liu, Y.: Efficient computation of clipped Voronoi diagram for mesh generation. Comput. Aid. Des. 45, 843–852 (2013)

    Article  Google Scholar 

  15. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal Voronoi tessellation – Energy smoothness and fast computation. ACM Trans. Graph. 28, 4 (2009)

    Google Scholar 

  16. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comput. Phys. 72, 449–466 (1987)

    Article  MATH  Google Scholar 

  17. Weatherill, N.P., Hassan, O.: Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int. J. Numer. Methods Eng. 37, 2005–2040 (1994)

    Article  MATH  Google Scholar 

  18. Morgan, K., Peraire, J., Peiro, J.: Unstructured grid methods for compressible flows. Report 787: Special Course on Unstructured Grid Methods for Advection Dominated Flows, AGARD, Paris, pp. 5.1–5.39 (1992)

    Google Scholar 

  19. Radovitzky, R., Ortiz, M.: Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation. Comput. Methods Appl. Mech. Eng. 187, 543–569 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rajan, V.T.: Optimality of the Delaunay triangulation in Rd. Discrete Comput. Geom. 12, 189–202 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kennel, M.: KDTREE 2: Fortran 95 and C++ software to efficiently search for near neighbors in a multi-dimensional Euclidean space. ArXiv Physics e-prints arXiv:physics/0408067v2 (2004)

    Google Scholar 

  22. Praveen, C., Duvigneau, R.: Low cost PSO using metamodels and inexact pre-evaluation: application to aerodynamic shape design. Comput. Methods Appl. Mech. Eng. 198, 1087–1096 (2009)

    Article  MATH  Google Scholar 

  23. Park, J., Shontz, S.M.: Two derivative-free optimization algorithms for mesh quality improvement. Proc. Comput. Sci. 1, 387–396 (2010)

    Article  Google Scholar 

  24. Yilmaz, A., Kuzuoglu, M.: A particle swarm optimization approach for hexahedral mesh smoothing. Int. J. Numer. Methods Fluids 60, 55–78 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Sean Walton acknowledges the financial support for this work provided by the UK Engineering and Physical Sciences Research Council (EPSRC) under Research Grant EP/K000705.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walton, S., Hassan, O., Morgan, K. (2015). Strategies for Generating Well Centered Tetrahedral Meshes on Industrial Geometries. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_8

Download citation

Publish with us

Policies and ethics