Skip to main content

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

  • 1183 Accesses

Abstract

We study the problem of maintaining a deforming surface mesh, specified only by a dense sample of n points that move with the surface. We propose a motion model under which the class of \((\varepsilon,\alpha )\)-meshes can be efficiently maintained by a combination of edge flips and insertion and deletion of vertices. We can enforce bounded aspect ratios and a small approximation error throughout the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3–48 (2007)

    Article  Google Scholar 

  2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22, 481–504 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH, pp. 43–54 (1998)

    Google Scholar 

  5. Beer, G., Smith, I., Duenser, C.: The Boundary Element Method with Programming. Springer, New York (2008)

    MATH  Google Scholar 

  6. Bredno, J., Lehmann, T.M., Spitzer, K.: A general discrete contour model in two, three, and four dimensions for topology-adaptive multichannel segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 550–563 (2003)

    Article  Google Scholar 

  7. Cheng, S.-W., Jin, J.: Edge flips and deforming surface meshes. In: Proceedings of the 28th Annual Symposium on Computational Geometry, pp. 331–340 (2011)

    Google Scholar 

  8. Cheng, S.-W., Jin, J.: Edge flips in surface meshes. Manuscript. http://www.cse.ust.hk/faculty/scheng/pub/deform.pdf (2013)

  9. Cheng, S.-W., Jin, J., Lau., M.-K.: A fast and simple surface reconstruction algorithm. In: Proceedings of the 28th Annual Symposium on Computational Geometry, pp. 69–78 (2012)

    Google Scholar 

  10. Delingette, H.: Towards realistic soft tissue modeling in medical simulation. In: Proceedings of the IEEE: Special Issue on Surgery Simulation, pp. 512–523 (1998)

    Google Scholar 

  11. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  12. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds. Discrete Comput. Geom. 32, 245–267 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Glimm, J., Grove, J.W., Li, X.L., Tan, D.C.: Robust computational algorithms for dynamic interface tracking in three dimensions. SIAM J. Sci. Comput. 21, 2240–2256 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hall, W.S.: The Boundary Element Method. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  16. Jiao, X.: Face offsetting: a unified approach for explicit moving interfaces. J. Comput. Phys. 220, 612–625 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jin, J.: Surface reconstruction and deformation. Doctoral Dissertation, The Hong Kong University of Science and Technology (2012)

    Book  Google Scholar 

  18. Khayat, R.E.: Three-dimensional boundary element analysis of drop deformation in confined flow for Newtonian and viscoelastic systems. Int. J. Numer. Methods Fluids 34, 241–275 (2000)

    Article  MATH  Google Scholar 

  19. Koch, R.K., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.: Simulating facial surgery using finite element methods. In: SIGGRAPH, pp. 421–428 (1996)

    Google Scholar 

  20. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, T., Shen, D., Davatzikos, C.: Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage 22, 1790–1801 (2004)

    Article  Google Scholar 

  22. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SIGGRAPH, pp. 154–159 (2003)

    Google Scholar 

  23. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamiltonian Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957–964 (2005)

    Article  Google Scholar 

  25. Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007)

    Article  Google Scholar 

  26. Pons, J., Boissonnat, J.D.: Delaunay deformable models: topology-adaptive meshes based on the restricted Delaunay triangulation. In: CVPR, 1–8 (2007)

    Google Scholar 

  27. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)

    Article  MATH  Google Scholar 

  29. Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Proceedings of the International Conference on Computer Graphics, pp. 265–272 (2001)

    Google Scholar 

  30. Wojtan, C., Thüey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM Trans. Graph. 28 (2009). Article 76

    Google Scholar 

Download references

Acknowledgements

Research supported by the Research Grant Council, Hong Kong, China (project no. 612107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Wing Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, SW., Jin, J. (2015). Deforming Surface Meshes. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_4

Download citation

Publish with us

Policies and ethics