Skip to main content

The Benefits of Anisotropic Mesh Adaptation for Brittle Fractures Under Plane-Strain Conditions

  • Chapter
New Challenges in Grid Generation and Adaptivity for Scientific Computing

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

Abstract

We develop a reliable a posteriori anisotropic first order estimator for the numerical simulation of the Frankfort and Marigo model of brittle fracture, after its approximation by means of the Ambrosio-Tortorelli variational model. We show that an adaptive algorithm based on this estimator reproduces all the previously obtained well-known benchmarks on fracture development with particular attention to the fracture directionality. Additionally, we explain why our method, based on an extremely careful tuning of the anisotropic adaptation, has the potential of outperforming significantly in terms of numerical complexity the ones used to achieve similar degrees of accuracy in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amestoy, M.: Propagations de Fissures en Élasticité Plane. Thèse d’Etat, Paris (1987)

    Google Scholar 

  3. Artina, M., Fornasier, M., Solombrino, F.: Linearly constrained nonsmooth and nonconvex minimization. SIAM J. Optim. 23(3), 1904–1937 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artina, M., Fornasier, M., Micheletti, S., Perotto, S.: Anisotropic adaptive meshes for brittle fractures: parameter sensitivity. Numerical Mathematics and Advanced Applications ENUMATH 2013. Springer International Publishing 293–301 (2015)

    Google Scholar 

  5. Artina, M., Fornasier, M., Micheletti, S., Perotto, S.: Anisotropic mesh adaptation for crack detection in brittle materials. MOX Report 20/2014 (2014)

    Google Scholar 

  6. Border, M., Verhoosel, C., Scott, M., Hughes, T., Landis, C.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

    Article  Google Scholar 

  7. Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a variational model of brittle fracture. SIAM J. Numer. Anal. 48(3), 980–1012 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23(9), 1663–1697 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chambolle, A., Dal Maso, G.: Discrete approximation of the Mumford-Shah functional in dimension two. M2AN Math. Model. Numer. Anal. 33(4), 651–672 (1999)

    Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2(1), 17–31 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2, 77–84 (1975)

    Google Scholar 

  14. Dal Maso, G.: An Introduction to Γ-Convergence. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  15. Dedè, L., Micheletti, S., Perotto, S.: Anisotropic error control for environmental applications. Appl. Numer. Math. 58(9), 1320–1339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Del Piero, G., Lancioni, G., March, R.: A variational model for fracture mechanics: numerical experiments. J. Mech. Phys. Solids 55, 2513–2537 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math. 94, 67–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing. Application to Finite Elements. Edition Hermès, Paris (1998)

    MATH  Google Scholar 

  21. Hecht, F.: New developments in Freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MATH  MathSciNet  Google Scholar 

  22. Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput. 70(233), 107–119 (2001)

    Article  MATH  Google Scholar 

  23. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)

    Book  Google Scholar 

  24. Micheletti, S., Perotto, S.: Reliability and efficiency of an anisotropic Zienkiewicz–Zhu error estimator. Comput. Methods Appl. Mech. Eng. 195(9), 799–835 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Micheletti, S., Perotto, S.: Output functional control for nonlinear equations driven by anisotropic mesh adaption: the Navier-Stokes equations. SIAM J. Sci. Comput. 30(6), 2817–2854 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Micheletti, S., Perotto, S.: The effect of anisotropic mesh adaptation on PDE-constrained optimal control problems. SIAM J. Control. Optim. 49(4), 1793–1828 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection–diffusion and the Stokes problems. SIAM J. Numer. Anal. 41(3), 1131–1162 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Miehe, C., Hofacker, M., Fabian, W.: A phase field model rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)

    Article  MATH  Google Scholar 

  29. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, vol. 212. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  30. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Artina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Artina, M., Fornasier, M., Micheletti, S., Perotto, S. (2015). The Benefits of Anisotropic Mesh Adaptation for Brittle Fractures Under Plane-Strain Conditions. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_3

Download citation

Publish with us

Policies and ethics