Skip to main content

Model-Based Disease Treatment: A Control Engineering Approach

  • Conference paper
Advances in Soft Computing, Intelligent Robotics and Control

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 8))

  • 1032 Accesses

Abstract

Computer engineering opens new ways in healthcare including a more exact treatment possibility of different diseases. By modeling the disease and using control engineering methods it is possible to refine the treatment, but also to seek for optimal solutions/therapies. The current work summarizes the results of model-based disease treatment researches in the field of physiological modeling and control carried out at the Physiological Controls Group of the Obuda University. The developed and presented optimal algorithms and strategies focus on three diseases with high public health impact: diabetes (the artificial pancreas problem), obesity (predicting obesity-related risks) and cancer (antiangiogenic therapy). The studies are done in strong collaboration with different Hungarian hospitals, from where measurement data were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonzino, J.: The Biomedical Engineering Handbook. CRC in cooperation with IEEE Press (1995)

    Google Scholar 

  2. Kovács, L., Sápi, J., Ferenci, T., Szalay, P., Drexler, D., Eigner, G., Sas, P.I., Harmati, I., Kozlovszky, M., Sápi, Z.: Model-based optimal therapy for high-impact diseases. In: Proc. INES 2013 – 17th International Conference on Intelligent Engineering Systems, Costa Rica, pp. 209–214 (2013)

    Google Scholar 

  3. Wild, S., Roglic, G., Green, A., Sicree, R., King, H.: Global prevalence of diabetes – Estimates for the year 2000 and projections for 2030. Diab. Care 27(5), 1047–1053 (2004)

    Article  Google Scholar 

  4. (April 8, 2013), http://www.idf.org/diabetesatlas/diabetes-young-global-perspective

  5. Fonyó, A., Ligeti, E.: Physiology, Medicina, 3rd edn., Budapest (2008)

    Google Scholar 

  6. Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., de Nicolao, G., Kovatchev, B.: Diabetes: Models, Signals, and Control (Methodological Review). IEEE Rev. Biomed. Eng. 2, 54–96 (2009)

    Article  Google Scholar 

  7. Andersen, R.E.: Obesity: etiology, assessment, treatment, and prevention. Human Kinetics Publishers, Champaign (2003)

    Google Scholar 

  8. SRI for Health, “Hungary’s healthcare and social system”, Budapest: Strategic Research Institute for Health (2004)

    Google Scholar 

  9. Avram, M.M., Avram, A.S., James, W.D.: Subcutaneous fat in normal and diseased states: 1. Introduction. J. Am. Acad. Dermat. 53, 663–670 (2005)

    Article  Google Scholar 

  10. Hungarian Central Statistical Institute, Mortality by common death causes (1990), http://portal.ksh.hu/pls/ksh/docs/hun/xstadat/xstadateves/iwnh001.html

  11. Malvezzi, M., Bertuccio, P., Levi, F., La Vecchia, C., Negri, E.: European cancer mortality predictions for the year 2013. Ann. Oncol. 24(3), 792–800 (2013)

    Article  Google Scholar 

  12. WHO, International Agency of Research on Cancer, http://www-dep.iarc.fr/

  13. WHO, Global Health Observatory, http://www.who.int/gho/en/

  14. Wu, H.C., Huang, C.T., Chang, D.K.: Anti-angiogenic therapeutic drugs for treatment of human cancer. J. Cancer 4(2), 37–45 (2008)

    Google Scholar 

  15. Chee, F., Tyrone, F.: Closed-loop control of blood glucose. LNCIS, vol. 368. Springer, Heidelberg (2007)

    Google Scholar 

  16. Femat, R., Ruiz-Velazquez, E., Quiroz, G.: Weighting Restriction for Intravenous Insulin Delivery on T1DM Patient via H  ∞  Control. IEEE T. Autom. Sci. Eng. 6(2), 239–247 (2009)

    Article  Google Scholar 

  17. Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD Thesis, Dept. of Chemical Eng. Massachusetts Institute of Technology, Cambridge (1985)

    Google Scholar 

  18. Kovács, L., Benyó, B., Bokor, J., Benyó, Z.: Induced L2-norm Minimization of Glucose-Insulin System for Type I Diabetic Patients. Comp. Meth. Prog. Biomed. 102(2), 105–118 (2011)

    Article  Google Scholar 

  19. Kovács, L., Szalay, P., Almássy, Z., Barkai, L.: Applicability Results of a Nonlinear Model-Based Robust Blood Glucose Control Algorithm. J. Diab. Sci. Tech. 7(3), 708–716 (2013)

    Article  Google Scholar 

  20. Dalla Man, C., Rizza, R., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE T. Biomed. Eng. 54(10), 1740–1749 (2007)

    Article  Google Scholar 

  21. Kovács, L., Szalay, P., Almássy, Z., Benyó, Z., Barkai, L.: Quasi In-Silico Validations of a Nonlinear LPV Model-based Robust Glucose Control Algorithm for Type I Diabetes. In: Proc. of IFAC WC 2011 – 18th World Congress of the International Federation of Automatic Control, Milano, Italy, pp. 7114–7119 (2011)

    Google Scholar 

  22. Mamtani, M., Kulkarni, H.: Predictive Performance of Anthropometric Indexes of Central Obesity for the Risk of Type 2 Diabetes. Arch. Med. Research 36, 581–589 (2005)

    Article  Google Scholar 

  23. Jebb, S.A., Elia, M.: Techniques for the measurement of body composition: A practical guide. Int. J. Obes. Relat. Metab. Disorders 17, 611–621 (1993)

    Google Scholar 

  24. Ferenci, T.: Biostatistical analysis of obesity related parameters in Hungarian children. MSc Thesis, Budapest University of Technology and Economics (2009) (in Hungarian)

    Google Scholar 

  25. Ferenci, T.: Two Applications of Biostatistics in the Analysis of Pathophysiological Processes. PhD Thesis, Óbuda Univeristy, Budapest (2013)

    Google Scholar 

  26. Ferenci, T., Almássy, Z., Kovács, A., Kovács, L.: Effects of obesity: a multivariate analysis of laboratory parameters. In: Proc. of 6th Int. Symp. on Appl. Comput. Intell. Inf., Timisoara, Romania, pp. 629–634 (2011)

    Google Scholar 

  27. Kerbel, R.S.: A cancer therapy resistant to resistance. Nature 390, 335–336 (1997)

    Article  Google Scholar 

  28. Kerbel, R., Folkman, J.: Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002)

    Article  Google Scholar 

  29. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Resarch 59, 4770–4775 (1999)

    Google Scholar 

  30. Ledzewitz, U., Schatler, H.: A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors. In: Proc. 44th IEEE Conference on Decision and Control, and the European Control Conference, pp. 934–939 (2005)

    Google Scholar 

  31. Ergun, A., Camphausen, K., Wein, L.M.: Optimal Scheduling of radiotherapy an angiogenic inhibitors. Bullet. Math. Biol. 65, 407–424 (2003)

    Article  Google Scholar 

  32. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J.: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997)

    Article  Google Scholar 

  33. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Interscience Publishers (1962)

    Google Scholar 

  34. Lantos, B.: Theory and Design of Control Systems I-II. Akadémia Kiadó, Budapest (2005) (in Hungarian)

    Google Scholar 

  35. Precup, R.E., Preitl, S.: Optimisation criteria in development of fuzzy controllers with dynamics. Eng. Applic. Artif. Intellig. 17(6), 661–674 (2004)

    Article  Google Scholar 

  36. Kovács, L., Paláncz, B.: Glucose-insulin control of Type1 diabetic patients in H2/H ∞  space via computer algebra. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 95–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Drexler, D.: Optimal control of tumor-based deseases’ chemotherapy. MSc thesis, Budapest University of Technology and Economics (2011) (in Hungarian)

    Google Scholar 

  38. Drexler, D.A., Harmati, I., Kovács, L.: Optimal control of tumor growth using antiangiogenic chemotherapy. In: Proc. of 3rd Int. Conf. on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics, Targu-Mures, Romania, pp. 273–284 (2011)

    Google Scholar 

  39. Drexler, D.A., Kovács, L., Sápi, J., Harmati, I., Benyó, Z.: Model-based analysis and synthesis of tumor growth under angiogenic inhibition: a case study. In: Proc. of IFAC WC 2011 – 18th World Congress of the International Federation of Automatic Control, Milano, Italy, pp. 5012–5017 (2011)

    Google Scholar 

  40. Kovács, L., Szalay, P., Ferenci, T., Drexler, D.A., Sápi, J., Harmati, I., Benyó, Z.: Modeling and Control Strategies of Diseases with High Public Health Impact. In: Proc. INES 2011 – 15th International Conference on Intelligent Engineering Systems, Poprad, Slovakia, pp. 23–28 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Kovács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kovács, L. (2014). Model-Based Disease Treatment: A Control Engineering Approach. In: Fodor, J., Fullér, R. (eds) Advances in Soft Computing, Intelligent Robotics and Control. Topics in Intelligent Engineering and Informatics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-05945-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05945-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05944-0

  • Online ISBN: 978-3-319-05945-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics