Skip to main content

Osmotolerant Microbial Resources of Saline Ecologies of India: Dynamics and Potential

  • Chapter
  • First Online:
Bacterial Diversity in Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 1))

  • 1486 Accesses

Abstract

In India, about 1.7 m ha saline, 3.8 m ha sodic-saline and 1.2 m ha coastal saline area and, about 6749 km2 mangroves spread on coastal and Island regions constitute the saline ecologies. The mangroves are fragile but highly important ecological entities, which have great biodiversity and novel natural resources including the microbes. The coastal and inland salinity severely affect productivity. However, every ecological niche has well-adapted resident microbial guilds which maintain the ecosystem functioning. Researches on diverse saline ecologies of India have led to identify osmotolerant beneficial microbes, which can be exploited to maintain environmental health, sustain agricultural, and commercial production of novel biological products, food and other industries, which operate in hypersaline condition. The osmotolerant microbes endure osmotic sock by moderating Na+/K+ flow, accumulating osmolytes or regulating the functions of stress tolerant enzymes (osmozymes). Unlike stress-free mesophilic counterparts, the osmotolerant microbes are more versatile as they can function in both stress and stress-free conditions. Therefore, the microbial resources of the saline ecologies of the country have the potency for welfare of the biological and environmental health, and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (2011) Introduction to soil microbiology, 2nd edn. Krieger, Melborne

    Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    CAS  Google Scholar 

  • Aronson JA (1989) Halophytes: salt tolerant plants for the world-a computerized global data base of halophytes with emphasis on their economic uses. University of Arizona Press, Tucson

    Google Scholar 

  • Ashokkumar S, Rajaram G, Manivasagan P, Ramesh S, Sampathkumar P, Mayavu P (2011) Studies on hydrological parameters, nutrient and microbial populations of Mullipallam creek in Muthupettai mangroves (South-East coast of India). Res J Microbiol 6:71–86

    CAS  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2012) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil (in press) doi:10.1007/s11104-012-1402-5

    Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol (in press) doi:10.1002/jobm.201200445

    Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Environ Microbiol Biotechnol 53:495–508

    CAS  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manage 10:421–452

    CAS  Google Scholar 

  • Barea J, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Bartlett DH, Roberts MF (2000) Osmotic stress. In: Lederberg J (ed) Encyclopedia of microbiology, vol III, 2nd edn. Academic , San Diego, pp 502–516

    Google Scholar 

  • Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K (2011) Studies on non-symbiotic diazotrophic bacterial populations of coastal arable saline soils of India. Indian J Microbiol 51:369–376

    PubMed Central  PubMed  Google Scholar 

  • Behera BC, Mishra RR, Thatoi HN (2012) Diversity of soil fungi from mangroves of Mahanadi delta, Orissa, India. J Microbiol Biotech Res 2:375–378

    Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen fixing bacteria as biofertilizer for non-legumes: prospects and challenge. Appl Microbiol Biotechnol 80:199–209

    CAS  PubMed  Google Scholar 

  • Bhattacharyya T, Pal DK, Mandal C, Chandran P, Ray SK, Sarkar D, Velmourougane K, Srivastava A, Sidhu GS, Singh RS, Sahoo AK, Dutta D, Nair KM, Srivastava R, Tiwary P, Nagar AP, Nimkhedkar SS (2013) Soils of India: historical perspective, classification and recent advances. Curr Sci 104:1308–1323

    CAS  Google Scholar 

  • Botelho GR, Mendonca-Hagler LC (2006) Fluorescent pseudomonads associated with the rhizosphere of crops-an overview. Brazil J Microbiol 37:401–416

    CAS  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3:61–70

    CAS  Google Scholar 

  • Chavada NB, Dave A, Patel B (2010) Study on diazotrophic and IAA producing bacteria isolated from desert soil submit an application for biofertilizer. Int J Appl Biol Pharma Technol I:1067–1071

    Google Scholar 

  • Chen HJ, Chen JY, Wang SJ (2008) Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiol Plant 30:135–142

    CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    CAS  PubMed  Google Scholar 

  • CSSRI (Central Soil Salinity Research Institute) (2012) Computerized database on salt effected soils in India. Indian Council of Agricultural Research, Ministry of Agriculture, Government of India, New Delhi

    Google Scholar 

  • Dagar JC (2005) Salinity research in India: an overview. Bull Nat Inst Ecol 15:69–80

    Google Scholar 

  • Dagar JC, Singh G (2007) Biodiversity of saline and waterlogged environments: documentation, utilization and management. NBA scientific bulletin no. 9, National Biodiversity Authority, Chennai, Tamil Nadu, India

    Google Scholar 

  • Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, Kannan R (2013) Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. African J Microbiol Res 7:5082–5089. doi:10.5897/AJMR2013.6003

    Google Scholar 

  • Dangar TK, Babu YK, Das J (2010) Population dynamics of soil microbes and diversity of Bacillus thuringiensis in agricultural and botanic garden soils of India. African J Biotechnol 9:496–501

    CAS  Google Scholar 

  • Das MK (1999) Fish and prawn disease epizoobiotics in aquatic ecosystems around Sundarban—an overview. In: Guha BDN, Sanyal P, Naskar KR (eds) Sundarbans mangal. Naya Prokash, Calcutta, pp 485–492

    Google Scholar 

  • Das J, Dangar TK (2008) Microbial population dynamics, especially stress tolerant Bacillus thuringiensis, in partially anaerobic rice field soils during postharvest period of the Himalayan, island, brackish water and coastal habitats of India. World J Microbiol Biotechnol 24:1403–1410. doi:10.1007/s11274-007-9620-3

    Google Scholar 

  • Das PK, Panda D, Dhal NK, Rout NC (2005) Impact of salinity on mangroves of Bhitarkanika. Plant Sci Res 27:33–37

    Google Scholar 

  • Das J, Das B, Dangar TK (2008) Microbial populations and Bacillus thuringiensis diversity in saline rice field soils of coastal Orissa, India. African J Microbiol Res 2:326–331

    Google Scholar 

  • Das S, De M, Ray R, Chowdhury C, Jana TK, De TK (2012) Microbial ecosystem in Sunderban mangrove forest sediment, North–East Coast of Bay of Bengal, India. Geomicrobiol J 29:656–666. doi:10.1080/01490451.2011.605988

    Google Scholar 

  • Das S, De M, Ray R, Ganguly D, Jana TK, De TK (2011) Salt tolerant culturable microbes accessible in the soil of the Sundarban mangrove forest, India. Open J Ecol 1:35–40

    Google Scholar 

  • de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Google Scholar 

  • Deshmukh KB, Pathak AP, Karuppayil MS (2011) Bacterial diversity of Lonar soda lake of India. Indian J Microbiol 51:107–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubey RC, Maheshwari DK (2012) A text book of microbiology. Chand, New Delhi

    Google Scholar 

  • Dudhagara PR, Patel RK, Ghelani AD, Bhatt SA (2008) Microbial biodiversity exploration for liquid biofertilizer application from wet land of little ran of Kutch, Gujarat, India. Proceedings of Taal 2007: the 12th world lake conference, pp 1858–1861

    Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant-microbe interactions. Environ Microbiol 12:1–12

    CAS  PubMed  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarratet J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 1–22

    Google Scholar 

  • Gauda R, Panigrahy RC (1989) Diurnal variation of phytoplankton in Rushikulya estuary, East coast of India. Indian J Marine Sci 18:246–250

    Google Scholar 

  • Ghosh A, Dey N, Bera A, Tiwari A, Sathyaniranjan KB, Chakrabarti K, Chattopadhyay D (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst (in press). doi:10.1186/1746-1448-6-1

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Glick BR, Pasternak JJ (eds) Molecular biotechnology principles and applications of recombinant DNA, 3rd edn. ASM, Washington, DC, pp 436–454

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentration by plant growth promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68:338–354

    Google Scholar 

  • Goutam K, Ramanathan A (2013) Microbial diversity in the surface sediments and its interaction with nutrients of mangroves of Gulf of Kachchh, Gujarat, India. Int Res J Environ Sci 2:25–30

    Google Scholar 

  • Govindasamy C, Ruban P, Sekar S (2012) Seasonal distribution of halophilic bacterial population in water and sediment at Muthupet mangrove, Tamil Nadu. Elixir Pollution 44:7320–7323

    Google Scholar 

  • Grene R (2002) Oxidative stress and acclimation mechanisms in plants. The Aradopsis Book, New York, pp 1–20 (Amer Soc Plant Biol (ed))

    Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, Francois-Xavier E, Dieudonne N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. African J Microbiol Res 2:171–178

    Google Scholar 

  • Hingole SS, Pathak AP (2013) Report on efficient salt stable Azospirillum a Lonar Soda Lake isolate. Sci Res Report 3:200–203

    Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation and rehabitation mangrove ecosystems: an over view. Biol Fertil Soils 33:265–278

    CAS  Google Scholar 

  • Hong K, Gao AN, Xie Q, Gao H, Zhung L, Lin H, Yu H, Li J, Yao X, Goodfellow M, Ruan J (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hossain MZ, Aziz CB, Saha ML (2012) Relationships between soil physico-chemical properties and total viable bacterial counts in Sundarban mangrove forests, Bangladesh. Dhaka Univ J Biol Sci 21:169–175

    Google Scholar 

  • IAB (2000) Indian agriculture in brief, 27th edn. Agriculture Statistics Division, Ministry of Agriculture, Govt. of India, New Delhi

    Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chilean J Agric Res 73:213–219

    Google Scholar 

  • Joshi SJ, Suthar H, Yadav AK, Hingurao K, Nerurkar A (2013) Occurrence of biosurfactant producing Bacillus sp. in diverse habitats. ISRN Biotechnol 2013:1–6

    Google Scholar 

  • Kanekar PP, Joshi AA, Kelkar AS, Borgave SB, Sarnaik SS (2008) Alkaline Lonar lake, India-a treasure of alkaliphilic bacteria. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th World Lake Conference, pp 1765–1774

    Google Scholar 

  • Kaur S, Singh A (2000) Distribution of Bacillus thuringiensis strains in different soil types from North India. Indian J Ecol 27:52–60

    Google Scholar 

  • Khan MR, Talukdar NC, Thakur D (2003) Detection of Azospirillum and PSB in rice rhizosphere soil by protein and antibiotic resistance profile and their effect on grain yield of rice. Indian J Biotechnol 2:246–250

    Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94:1259–1266

    CAS  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Google Scholar 

  • Koyani R, Patel H, Patel P, Dharaiya N, Patel RK (2009) Study on microbial diversity of wild ass sanctuary, Little Rann of Kutch, Gujarat, India. ICFAI Univ J Life Sci 3:1–8

    Google Scholar 

  • Kumar RS (2000) A review of the biodiversity studies of soil dwelling organisms in Indian mangroves. Zoos Print J 15:221–227

    Google Scholar 

  • Kumar G, Ramanathan A (2013) Microbial diversity in the surface sediments and its interaction with nutrients of mangroves of Gulf of Kachchh, Gujarat, India. Int Res J Environ Sci 2:25–30

    Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, p 434. doi:10.1007/978-3-642-18357-72

    Google Scholar 

  • Lagade VM, Taware SS, Andmuleyd V (2011) Pphysico-chemical parameters of estuary and their adjoining mangrove habitat from Bhatye, Ratnagiri (M.S.). Elec J Environ Sci 4:135–141

    Google Scholar 

  • Lakshman HC, Madgaonkar SC, Mirdhe RM, Kolkar KP (2013) AM fungi mediated effect on plant survival in a coastal saline soil with relation to other amendments. Indian J Appl Res 3:1–3

    Google Scholar 

  • Lakshmanan G, Selvam V (2011) The dynamics in the distribution of mangrove forests in Pichavaram, South India-perception by user community and remote sensing. Geocarto Int 26:475–490. doi:10.1080/10106049.2011.591943

    Google Scholar 

  • Lakshmanaperumalsamy P (1987) Nitrogen fixing bacteria, Azotobacter sp. in aquatic sediment. Fish Technol Soc Fish Techno Cochin 24:126–128

    Google Scholar 

  • Leeman M, Den Ouden FM, van Pelt JA, Hendrickx MJ, Scheffer R, Bakker PAHM, Schippers B (1995) Biocontrol of fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301–1305

    Google Scholar 

  • Liesack W, Schnell S, Resbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    CAS  PubMed  Google Scholar 

  • Loganathan P, Nair S (2003) Crop-specific endophytic colonization by a novel, salt tolerant, N2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnol Lett 25:497–501

    CAS  PubMed  Google Scholar 

  • Mahajan MS, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Google Scholar 

  • Maheshwari DK (2011) Bacteria in agrobiology: crop ecosystem. Springer, Berlin

    Google Scholar 

  • Maheshwari DK (2012) Bacteria in agrobiology: stress management. Springer, Berlin

    Google Scholar 

  • Maheshwari DK (2013) Bacteria in agrobiology: disease management. Springer, Berlin

    Google Scholar 

  • Maji AK, Obi Reddy GP, Sarkar D (2010) Degraded and wastelands of India-status and spatial distribution (Verma SA (ed)). Indian Council of Agricultural Research, New Delhi, p 158

    Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    CAS  PubMed  Google Scholar 

  • Maria GL, Sridhar KR (2003) Diversity of filamentous fungi on woody litter of five mangrove plant species from the South West coast of India. Fungal Diversity 14:109–126

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraus J-P, Defago G (1994) Induction of systemic resistance of tobacco-to-tobacco necrosis virus by root colonizing Pseudomonas fluorescens CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Mishra RR, Dangar TK, Rath B, Thatoi HN (2009) Characterization and evaluation of stress and heavy metal tolerance of some predominant Gram negative halotolerant bacteria from mangrove soils of Bhitarkanika, Orissa, India. African J Biotechnol 8:2224–2231

    CAS  Google Scholar 

  • Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi HN (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237

    CAS  PubMed  Google Scholar 

  • Mishra RR, Dhal B, Dutta SK, Dangar TK, Das NN, Thatoi HN (2012a) Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Materioal (in press). http://dx.doi.org/10.1016/j.jhazmat.2012.05.063

  • Mishra RR, Swain MR, Dangar TK, Thatoi HN (2012b) Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Rev Biol Trop 60:909–924

    Google Scholar 

  • Mitsuchi M, Wichaidit P, Jeungnijnirund S (1986) Outline of soils of the northeast plateau, Thailand: their characteristics and constraints. Technical paper No. 1. Khon-Kaen: Agricultural Development Research Center in the North-East

    Google Scholar 

  • Moat AG, Foster JW, Spector MP (2002) Microbial physiology. Wiley-Liss, New York

    Google Scholar 

  • Nambiar GR, Raveendran K (2009) Frequency and abundance of marine mycoflora in mangrove ecosystem of North Malabar, Kerala (India). Acad J Plant Sci 2:65–68

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Google Scholar 

  • Nayak S, Gonsalves V, Nazaerth W (2012) Isolation of salt tolerance of halophilic fungi from mangroves and solar salterns in Goa-India. Indian J Geo-Marine Sci 41:164–172

    CAS  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384. doi:10.1002/jobm.200700365

    CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Van Wees SCM, Ton J, Leon-Kloosterziel KM, Keurentjes JJB, Verhagen BWM, Knoester M, Van der Sluis S, Bakker PAHM, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 107:51–61

    Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    CAS  PubMed  Google Scholar 

  • Quin L, Yoshida T, Inouye M (2000) The critical role of DNA in the equilibrium between OmpR and phosphorylated OmpR mediated by EnvZ in Escherichia coli. Proc Natl Acad Sci U S A 98:908–913

    Google Scholar 

  • Raddadi N, Belaouis A, Tamagnini I, Hansen BM, Hendriksen NB, Boudabous A, Cherif A, Daffonchio D (2009) Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J Basic Microbiol 49:293–303

    CAS  PubMed  Google Scholar 

  • Ramanathan AL, Singh G, Majumdar J, Samal AC, Chauhan R, Ranjan RK, Rajkumar K, Santra SC (2008) A study of microbial diversity and its interaction with nutrients in the sediments of Sundarban mangroves. Indian J Marine Sci 37:159–165

    CAS  Google Scholar 

  • Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas sp. under saline soil condition. Plant Soil 251:73–82

    Google Scholar 

  • Ravikumar DR, Vittal BPR (1996) Fungal diversity on decomposing biomass of mangrove plant Rhizophora in Pichagram estuary, East coast of India. Ind J Mar Sci 21:64–66

    Google Scholar 

  • Ravikumar S (1995) Nitrogen fixing Azotobacters from the mangrove habitat and their utility as biofertilizers. Ph.D. thesis, Annamalai University, India, p 130

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    CAS  Google Scholar 

  • RoeBler M, Muller V (2001) Osmoadaptation in bacteria and Archaea: common principles and differences. Environ Microbiol 3:743–754

    Google Scholar 

  • Ruban P, Gunaseelan C (2011) Antibiotic resistance of bacteria from Krishna Godavari Basin, Bay of Bengal, India. Environ Exp Biol 9:133–136

    Google Scholar 

  • Sahoo K, Dhal NK (2009) Potential microbial diversity in mangrove ecosystems: a review. Indian J Marine Sci 38:249–256

    CAS  Google Scholar 

  • Sahoo R, Ansari M, Dangar TK, Mohanty S, Tuteja N (2013a) Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains from rice fields for crop improvement. Protoplasma (in press). doi:10.1007/s00709-013-0547-2

    Google Scholar 

  • Sahoo R, Mohanty S, Dangar TK (2013b) Field evaluation of native Azotobacter and Azospirillum sp. formulations for rice (Oryza sativa L. var. Khandagiri) productivity in laterite soil. Oryza 50:65–69

    Google Scholar 

  • Sahoo RK, Dangar TK, Tuteja N (2013c) Formulation of associative nitrogen fixing Azotobacter and Azospirillum biofertilizers for improvement of rice production—a review. In: Thatoi H, Mishra BB (eds) Advances in biotechnology. Studium Press LLC, Houston

    Google Scholar 

  • Saikia R, Kumar R, Arora DK, Gogoi DK, Azad P (2006) Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases. Folia Microbiol 51:375–380

    CAS  Google Scholar 

  • Samuel S, Muthukkaruppan SM (2011) Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil. Curr Bot 2:22–25

    CAS  Google Scholar 

  • Saravanakumar A, Rajkumar M, Serebiah JS, Thivakaran GA (2008) Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. J Environ Biol 29:725–732

    CAS  PubMed  Google Scholar 

  • Selvakunar G, Sundararaman M (2001) Mangrove associated cyanobacterial species in Muthupet estuary. Seaweed Res Utiln 23:19–22

    Google Scholar 

  • Sengupta A, Chaudhuri S (1990) Halotolerant Rhizobium strains from mangrove swamps of the Ganges river delta. Indian J Microbiol 30:483–484

    Google Scholar 

  • Sharma R, Ranjan R, Kapardar RK, Grover A (2005) ‘Unculturable’ bacterial diversity: an untapped resource. Current Sci 89:72–77

    CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2011) Improved salinity tolerance of Arachis hypozea (L) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul (in press). doi:10.1007/s00344-011-9231-y

    Google Scholar 

  • Singh AK, Ansari A, Kumar D, Sarkar UK (2012) Status, biodiversity and distribution of mangroves in India: an overview. Uttar Pradesh Biodiversity Board, Lucknow

    Google Scholar 

  • Spark DL (1995) Environmental soil chemistry. Academic, California

    Google Scholar 

  • Srivastava R, Shalini (2008) Antifungal activity of Pseudomonas fluorescens against different plant pathogenic fungi. Electron J Environ Agricul Food Chem 7:2881–2889

    Google Scholar 

  • Srivastava J, Farooqui A, Hussain SM (2012) Sedimentology and salinity status in Pichavaram mangrove wetland, South East coast of India. Int J Geol 2:7–15

    Google Scholar 

  • Subba Rao NS (2007) Soil microorganisms and plant growth. Oxford IBH, New Delhi

    Google Scholar 

  • Surve VV, Patil MU, Dharmadekari SM (2012) Moderately halophilic bacteria from solar salt pans of Ribander, Goa: a comparative study. Inter J Adv Biotechnol Res 3:635–643

    CAS  Google Scholar 

  • Swarnakumar NS, Sahu MK, Sivakumar K, Thangaradjou T (2008) Assessment of microbial pollution in the coastal environs of the Little Andaman Island, India. Indian J Marine Sci 37:146–152

    Google Scholar 

  • Tambong JT, Hofte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521

    CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58. DOI: 10.1080/17429140903125848

    CAS  Google Scholar 

  • Thatoi H, Behera BC, Dangar TK, Mishra RR (2012) Microbial Biodiversity in mangrove soils of Bhitarkanika, Odisha, India. Int J Env Biol 2:50–58

    Google Scholar 

  • Thomas M, Pal KK, Dey R, Saxena AK, Dave SR (2012) A novel haloarchaeal lineage widely distributed in the hypersaline marshy environment of Little and Great Rann of Kutch in India. Curr Sci 103:1078–1084

    CAS  Google Scholar 

  • Thongthai C, Suntinanalert P (1991) Halophiles in Thi-fish sauce (nampla). In: Rodriguez VF (ed) General and applied aspects of halophilic microorganisms. Plenum, New York, pp 381–388

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:36–150

    Google Scholar 

  • Tripathi AK, Mishra BM, Tripathi P (1998) Salinity stress responses in the plant growth promoting rhizobacteria, Azospitiloim sp. J Biosci 23:463–471

    CAS  Google Scholar 

  • Tripathi S, Chakraborty A, Chakrabarti K, Bandyopadhyay BK (2007) Enzyme activities and microbial biomass in coastal soils of India. Soil Biol Biochem 39:2840–2848

    CAS  Google Scholar 

  • Upadhyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free living plant growth promoting rhizobacteria. Indian J Sci Res 3:73–78

    CAS  Google Scholar 

  • Upadhyay SK, Singh DP, Saokia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline conditions. Curr Microbiol 59:489–496

    CAS  PubMed  Google Scholar 

  • Upasani VN (2008) Microbiological studies on Sambhar lake (salt earth) Rajasthan, India. Proceedings of Taal 2007: the 12th World Lake Conference, (Sengupta M, Dalwani R (eds)), pp 448–450

    Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Google Scholar 

  • van Wees SCM, Pieterse CMJ, Trijssenaar A, van T, Westende YAM, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724

    CAS  PubMed  Google Scholar 

  • Ventosa A (2004) Halophilic microorganism. Springer, New York

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verma DPS (1993) A genetic engineering approach to improve salinity tolerance in rice. In: Muralidharan K, Siddiq EA (eds) New frontiers in rice research. Pragati Art Printers, Hyderabad, p 400

    Google Scholar 

  • Vittal BPR, Sharma VV (2006) Diversity and ecology of fungi on mangroves of Bay of Bengal region-an overview. Indian J Marine Sci 35:308–317

    Google Scholar 

  • Vora JU, Modi HA (2013) Bacterial diversity of soil samples of saline sites in Kharaghoda (Tehsil-Patdi, District-Surendranagar), Gujarat. Int J Res Pure Appl Microbiol 3:102–106

    Google Scholar 

  • Vreeland RH (1993) Biology of halophilic bacteria, part I. Introduction, biology of halophilic bacteria: research priorities and biotechnological potential for the 1990s. Experientia 49:471–472

    Google Scholar 

  • Watve M, Shejval V, Sonawane C, Rahalkar M, Matapurkar A, Shouche Y, Patole M, Phadnis N, Champhenkar A, Damle K, Karandikar S, Kshirsagar, Jog M (2000) The ‘K’ selected oligophilic bacteria: a key to uncultured diversity? Cur Sci 78:535–1542

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Yadav N, Yadav VK (2003) Bacillus coagulans, a highly salt tolerant bacterium from native spoil of Rajasthan. Indian J Microbiol 43:243–246

    Google Scholar 

  • Yanni YG, Dazzo FB, Zidan MI (2011) Beneficial endophytic rhizobia as biofertilizer inoculants for rice and the spatial ecology of this bacteria-plant association. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 265–294

    Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 4:1059–1065

    Google Scholar 

  • Yousuf B, Sanadhya P, Keshri J, Jha B (2012) Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 12:150–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fert Soils 25:211–223

    CAS  Google Scholar 

  • Zahran HH, Moharram AM, Mohammad HA (1992) Some ecological and physiological studies on bacteria isolated from salt affected soils of Egypt. J Basic Microbiol 32:405–413

    CAS  PubMed  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    CAS  Google Scholar 

  • Zeigler DR (1999) Bacillus genetic stock center catalogue of strains, 7th edn. The Ohio State University, Columbus

    Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Dangar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rath, J., Dangar, T. (2014). Osmotolerant Microbial Resources of Saline Ecologies of India: Dynamics and Potential. In: Maheshwari, D. (eds) Bacterial Diversity in Sustainable Agriculture. Sustainable Development and Biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_11

Download citation

Publish with us

Policies and ethics