Skip to main content

Concrete Structures Subjected to Fire Loading: From Thermo-Mechanical Modeling of Strain Behavior of Concrete Towards Structural Safety Assessment

  • Chapter
  • First Online:
Computational Engineering

Abstract

In this chapter, results obtained within a 4-year research project on the safety of underground structures subjected to fire loading are presented. For this project, a consortium consisting of three scientific partners (Vienna University of Technology, University of Innsbruck, University of Natural Resources and Life Sciences, Vienna) and eight industrial partners (ÖBB-Infrastruktur AG, ASFINAG, Wiener Linien, Arge Bautech, VÖZFI, Büro Dr. Lindlbauer, Schimetta Consult, ZT Reissmann) was established. Whereas the mentioned research project followed a holistic approach, covering simulation of the fire event, experimental investigation of concrete and concrete structures at high temperatures, and modeling and simulation work at both the material and the structural scale (Amouzandeh, Development and application of a computational fluid dynamics code to predict the thermal impact of underground structures in case of fire, Ph.D. thesis, Vienna University of Technology, Vienna, 2012; Ring et al. Brandversuche zum Abplatz- und Strukturverhalten von Tunnel mit Rechtecksquerschnitt [Fire experiments investigating the spalling and structural behavior of rectangular tunnels], Technical Report, Vienna University of Technology and Vereinigung der österreichischen Zementindustrie (VÖZFI), Vienna, 2012; Ring, Experimental characterization and modeling of concrete at high temperatures: Structural safety assessment of different tunnel cross-sections subjected to fire loading, Ph.D. thesis, Vienna University of Technology, Vienna, 2012; Zhang, Simulations for durability assessment of concrete structures: multifield framework and strong discontinuity embedded approach, Ph.D. thesis, Vienna University of Technology, Vienna, 2013), this chapter focuses on one aspect of the project, namely modeling and simulation of the behavior of concrete and concrete structures under combined thermal and mechanical loading:

  1. 1.

    First, a micromechanical model taking the composite nature of concrete into account is presented. Based on experimental results obtained for cement paste and aggregate subjected to thermal/mechanical loading, a two-scale model formulated within the framework of continuum micromechanics is developed, giving access to the effective elastic and thermal-dilation properties of concrete as a function of temperature.

  2. 2.

    In a second step, these model-based properties are considered within a differential formulation of the underlying stress–strain law, accounting for the influence of mechanical loading on the thermal-strain evolution. The proposed micromechanical approach and its implementation are validated by experimental results obtained from concrete specimens subjected to combined thermo-mechanical loading.

  3. 3.

    Finally, the effect of the underlying model assumptions at the structural scale is illustrated by means of the safety assessment of underground support structures under fire attack.

The obtained results are nowadays considered in the formulation of standards and guidelines for the assessment of the safety of underground structures subjected to fire loading (ÖBV-Richtlinie: Fire protection with concrete for underground traffic infrastructure [Erhöhter baulicher Brandschutz mit Beton für unterirdische Verkehrsbauwerke], Austrian Society for Construction Technology, Vienna, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For details on the underlying mix-design, the reader is referred to [22]

References

  1. Abrams, M.S.: Compressive strength of concrete at temperatures to 1600 F. Am. Concrete Inst. SP 25, 33–58 (1971)

    Google Scholar 

  2. Alarcon-Ruiz, L., Platret, G., Massieu, E., Ehrlacher, A.: The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement Concrete Res. 35, 609–613 (2005)

    Article  Google Scholar 

  3. Anderberg, Y., Thelandersson, S.: Stress and Deformation Characteristics of Concrete at High Temperatures: 2. Experimental Investigation and Material Behaviour Model. Technical Report 54. Lund Institute of Technology, Lund (1976)

    Google Scholar 

  4. CEB: Fire Design of Concrete Structures, Bulletin d’Information 208. CEB, Lausanne (1991)

    Google Scholar 

  5. Cruz, C.R., Gillen, M.: Thermal expansion of portland cement paste, mortar, and concrete at high temperatures. Fire Mater. 4(2), 1–12 (1980)

    Article  Google Scholar 

  6. DeJong, M.J., Ulm, F.-J.: The nanogranular behavior of C-S-H at elevated temperatures (up to 700C). Cement Concrete Res. 37, 1–12 (2007)

    Article  Google Scholar 

  7. Dweck, J., Ferrerira da Silva, P.F., Büchler, P.M., Cartledge, F.K.: Study by thermogravimetry on the evolution of ettringite phase during type II Portland cement hydration. J. Therm. Anal. Calorim. 69, 179–186 (2002)

    Google Scholar 

  8. Ehm, C.: Versuche zur Festigkeit und Verformung von Beton unter zweiaxialer Beanspruchung und hohen Temperaturen [Experiments on strength and strain of concrete under biaxial loading at high temperatures]. Ph.D. thesis, University of Braunschweig, Braunschweig (1985)

    Google Scholar 

  9. EN1992–1–2: Eurocode 2 – Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall [Eurocode 2 – Design of concrete structures – Part 1-2: General rules – Structural fire design]. European Committee for Standardization (CEN) (2007)

    Google Scholar 

  10. Gawin, D., Pesavento, F., Schrefler, B.A.: Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Eng. 195(41–43), 5707–5729 (2006)

    Article  MATH  Google Scholar 

  11. Jay, A.H.: The thermal expansion of Quartz by X-ray measurements. Proc. R. Soc. Lond. 37(133), 195–215 (1985)

    Google Scholar 

  12. Khoury, G.A., Grainger, B.N., Sullivan, P.J.E.: Strain of concrete during first heating to 600C under load. Mag. Concr. Res. 37(133), 195–215 (1985)

    Article  Google Scholar 

  13. Kührer, T.: Nachbrandfestigkeit von zementgebundenen Werkstoffen. Druckversuche und Thermogravimetriemessungen [Fire exposed cementitious materials, compressive strength and TG-measurements]. Technical Report, Vienna University of Technology, Vienna (2008)

    Google Scholar 

  14. Lackner, R., Pichler, C., Kloiber, A.: Artificial ground freezing of fully saturated soil: viscoelastic behavior. J. Eng. Mech. 134(1), 1–11 (2008)

    Article  Google Scholar 

  15. Lakshtanov, D.L., Sinogeikin, S.V., Bass, J.D.: High-temperature phase transitions and elasticity of silica polymorphs. Phys. Chem. Miner. 34(1), 11–22 (2007)

    Article  Google Scholar 

  16. Lee, J., Xi, Y., William, K., Jung, Y.: A multiscale model for modulus of elasticity of concrete at high temperatures. Cement Concrete Res. 39, 754–762 (2009)

    Article  Google Scholar 

  17. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metar. 21, 571–574 (1973)

    Article  Google Scholar 

  18. Nielsen, C.V., Pearce, C.J., Bićanić, N.: Improved phenomenological modelling of transient thermal strains for concrete at high temperatures. Comput. Concrete 1–2, 189–209 (2004)

    Article  Google Scholar 

  19. Petkovski, M.: Effects of stress during heating on strength and stiffness of concrete at elevated temperature. Cement Concrete Res. 40, 1744–1755 (2010)

    Article  Google Scholar 

  20. Pichler, C.: Multiscale characterization and modeling of creep and autogenous shrinkage of early-age cement-based materials. Ph.D. thesis, Vienna University of Technology, Vienna (2007)

    Google Scholar 

  21. Pichler, C., Lackner, R.: A multiscale micromechanics model for early-age basic creep of cement-based materials. Comput. Concrete 5(4), 295–328 (2008)

    Article  Google Scholar 

  22. Ring, T., Zeiml, M., Lackner, R., Eberhardsteiner, J.: Experimental investiagtion of strain behavior of heated cement paste and concrete. Strain 49, 249–256 (2013)

    Article  Google Scholar 

  23. Ring, T., Zeiml, M., Lackner, R.: Underground concrete frame structures subjected to fire loading: Part I-Large scale fire tests. Eng. Struct. 58, 175–187 (2014)

    Article  MATH  Google Scholar 

  24. Savov, K., Lackner, R., Mang, H.A.: Stability assessment of shallow tunnels subjected to fire load. Fire Saf. J. 40, 745–763 (2005)

    Article  Google Scholar 

  25. Schneider, U.: Concrete at high temperature: a general review. Fire Saf. J. 13, 55–68 (1988)

    Article  Google Scholar 

  26. Terro, M.J.: Numerical modeling of the behavior of concrete structures in fire. Am. Concrete Inst. 95(2), 183–193 (1998)

    Google Scholar 

  27. Thelandersson, S.: Modeling of combined thermal and mechanical action in concrete. J. Eng. Mech. 113(6), 893–906 (1987)

    Article  Google Scholar 

  28. Thienel, K.-C.: Festigkeit und Verformung von Beton bei hoher Temperatur und biaxialer Beanspruchung – Versuche und Modellbildung [Strength and deformation of concrete at high temperature – experiments and modeling]. Technical Report 437, Deutscher Ausschuss für Stahlbeton, Berlin (1994)

    Google Scholar 

  29. Tsivilis, S., Kakali, G., Chaniotakis, E., Souvaridou, A.: A study on the hydration of portland limestone cement by means of TG. J. Therm. Anal. Calorim. 52, 863–870 (1998)

    Article  Google Scholar 

  30. Zeiml, M., Lackner, R., Pesavento, F., Schrefler, B.A.: Thermo-hydro-chemical couplings considered in safety assessment of shallow tunnels subjected to fire load. Fire Saf. J. 43(2), 83–95 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted with financial support by the Austrian Ministry for Transport, Innovation and Technology (bm.vit) within the KIRAS-project (Austrian security research program) 824781 “Sicherheit von Hohlraumbauten unter Feuerlast—Entwicklung eines Struktursimulationstools (Safety of underground structures under fire loading—Development of a structural simulation tool)”. The authors want to take this opportunity to thank all members of the research consortium for the fruitful and inspiring cooperation throughout this research project, having ranged from fundamental research toward applied research dealing with the structural safety assessment of tunnels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ring .

Editor information

Editors and Affiliations

Appendix: Effective Prescribed Strains in Two-Phase Materials

Appendix: Effective Prescribed Strains in Two-Phase Materials

According to [14], the effective strain E eff is related to the prescribed strain \(\bar{\varepsilon }\) in the material phases as:

$$\displaystyle{ K_{\mathrm{eff}}E_{\mathrm{eff}} =\langle A: K:\bar{\varepsilon }\rangle _{V }\,. }$$
(6.19)

Considering a two-phase material with matrix m and inclusion i, with

$$\displaystyle{ \bar{\varepsilon }=\bar{\varepsilon } _{m}\ \mbox{ in}\ V _{m},\ \bar{\varepsilon }=\bar{\varepsilon } _{i}\ \mbox{ in}\ V _{i}, }$$
(6.20)

\(\bar{\varepsilon }_{i}\) may be substituted by

$$\displaystyle{ \bar{\varepsilon }_{i} =\bar{\varepsilon } _{m} +\varDelta \bar{\varepsilon } _{i}. }$$
(6.21)

Rewriting Eq. (6.19) and considering Eq. (6.21) gives

$$\displaystyle{ K_{\mathrm{eff}}E_{\mathrm{eff}} =\langle A: K\rangle _{V }\bar{\varepsilon }_{m} + f_{i}\langle A: K\rangle _{V _{i}}\varDelta \bar{\varepsilon }_{i}\,. }$$
(6.22)

Considering \(K_{\mathrm{eff}} =\langle A: K\rangle _{V }\) in Eq. (6.22), one gets

$$\displaystyle{ E_{\mathrm{eff}} =\bar{\varepsilon } _{m} + f_{i}\langle A\rangle _{V _{i}} \frac{K_{i}} {K_{\mathrm{eff}}}(\bar{\varepsilon }_{i} -\bar{\varepsilon }_{m}), }$$
(6.23)

where \(\langle A\rangle _{V i}\) is given in [14].

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ring, T., Zeiml, M., Lackner, R. (2014). Concrete Structures Subjected to Fire Loading: From Thermo-Mechanical Modeling of Strain Behavior of Concrete Towards Structural Safety Assessment. In: Hofstetter, G. (eds) Computational Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05933-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05933-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05932-7

  • Online ISBN: 978-3-319-05933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics