Skip to main content

Multi-Phase Models in Civil Engineering

  • Chapter
  • First Online:
Computational Engineering

Abstract

Some problems in civil engineering require the consideration of interactions between solids and fluids and/or between different physical phenomena, like thermal, hygral or chemical processes, for an appropriate description of the material behaviour and of the structural response. This chapter deals with the current developments of multi-phase models focusing on soils and concrete. The latter materials are characterized by a certain degree of permeability allowing liquid or gaseous phases to enter the pore space and to interact with the surrounding solid phase. Since the resulting interactions between the different phases may have a strong impact on the structural behaviour, they have to be accounted for appropriately in numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, E.E, Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique 40, 405–430 (1990)

    Article  Google Scholar 

  2. Bazant, Z.P., Hauggaard, A., Baweja, S., Ulm, F.: Microprestress-solidification theory for concrete creep. I: aging and drying effects. J. Eng. Mech. (ASCE) 123, 1188–1194 (1997)

    Google Scholar 

  3. Bazant, Z.P., Cusatis, G., Cedolin, L.: Temperature effect on concrete creep modeled by microprestress-solidification theory. J. Eng. Mech. (ASCE) 130, 691–699 (2004)

    Google Scholar 

  4. Beushausen, H.: Failure mechanisms and tensile relaxation of bonded concrete overlays subjected to differential shrinkage. Cement Concrete Res. 36, 1908–1914 (2006)

    Article  Google Scholar 

  5. Bucio, M.B.: Estudio experimental del comportamiento hidro-mecanico de suelos colapsables. Ph.D thesis, Universitat Politecnica de Catalunya (2002)

    Google Scholar 

  6. Cervera, M., Olivier, J., Prato, T.: A thermo-chemo-mechanical model for concrete. I: hydration and aging. J. Eng. Mech. (ASCE) 125, 1018–1027 (1999)

    Google Scholar 

  7. De Borst, R., Groen, A.E.: Computational strategies for standard soil plasticity models. In: Zaman, M., Booker, J. (eds.) GiodaModeling in Geomechanics, pp. 23–50. Wiley, Chichester (2000)

    Google Scholar 

  8. Di Maggio, F.L., Sandler, I.S.: Material model for granular soils. J. Eng. Mech. Div. (ASCE) 97, 935–950 (1971)

    Google Scholar 

  9. Dolarevic, S., Ibrahimbegovic, A.: A modified three-surface elasto-plastic cap model and its numerical implementation. Comput. Struct. 85, 419–430 (2007)

    Article  Google Scholar 

  10. Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259 (1995)

    Article  Google Scholar 

  11. Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)

    Article  MATH  Google Scholar 

  12. Gamnitzer, P., Hofstetter, G.: A cap model for soils featuring a smooth transition from partially to fully saturated state. Proc. Appl. Math. Mech. 13, 169–170 (2013)

    Article  Google Scholar 

  13. Gamnitzer, P., Hofstetter, G.: An improved cap model for partially saturated soils. In: ASCE Conference Proceedings of the Biot Conference on Poromechanics V, pp. 569–578, Vienna (2013)

    Google Scholar 

  14. Gawin, D., Majorana, C.E., Schrefler, B.A.: Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohesive Frictional Mater. 4, 37–74 (1999)

    Article  Google Scholar 

  15. Gawin, D., Pesavento, F., Schrefler, B.A.: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena. Int. J. Numerical Methods Eng. 67, 299–331(2006)

    Google Scholar 

  16. Gawin, D., Pesavento, F., Schrefler, B.A.: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete. Int. J. Numerical Methods Eng. 67, 332–363 (2006)

    MATH  Google Scholar 

  17. Hochgürtel, T.: Numerische Untersuchungen zur Beurteilung der Standsicherheit der Ortsbrust beim Einsatz von Druckluft zur Wasserhaltung im schildvorgetriebenen Tunnelbau. Dissertation, RWTH Aachen (1998)

    Google Scholar 

  18. Kohler, R., Hofstetter, G.: A cap model for partially saturated soils. Int. J. Numerical Anal. Methods Geomech. 32, 981–1004 (2008)

    Article  MATH  Google Scholar 

  19. Lewis, R.D., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York (1998)

    MATH  Google Scholar 

  20. Macari, E.J., Hoyos, L.R., Arduino, P.: Constitutive modeling of unsaturated soil behavior under axisymmetric stress states using a stress/suction-controlled cubical test cell. Int. J. Plast. 19, 1481–1515 (2003)

    Article  MATH  Google Scholar 

  21. ÖNORM EN 1992-1-1: Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings. Austrian Standards Institute, Vienna (2011)

    Google Scholar 

  22. Parker, J.C. Multiphase flow and transport in porous media. Rev. Geophys. 27, 311–328 (1989)

    Article  Google Scholar 

  23. Pertl, M.: Grundlagen, Implementierung und Anwendung eines Drei-Phasen Modells für Böden. Dissertation, Universität Innsbruck (2010)

    Google Scholar 

  24. Schrefler, B.A.: Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55, 351–388 (2002)

    Article  Google Scholar 

  25. Theiner, Y., Hofstetter, G.: Evaluation of the effects of drying shrinkage on the behaviour of concrete structures strengthened by overlays. Cement Concrete Res. 42, 1286–1297 (2012)

    Article  Google Scholar 

  26. Valentini, B., Theiner, Y., Aschaber, M., Lehar, H., Hofstetter, G.: Single-phase and multi-phase modeling of concrete structures. Eng. Struct. 47, 25–34 (2013)

    Article  Google Scholar 

  27. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gamnitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gamnitzer, P., Aschaber, M., Hofstetter, G. (2014). Multi-Phase Models in Civil Engineering. In: Hofstetter, G. (eds) Computational Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05933-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05933-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05932-7

  • Online ISBN: 978-3-319-05933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics