Skip to main content

Sensitivity and Reliability Analysis of Engineering Structures: Sampling Based Methods

  • Chapter
  • First Online:
Computational Engineering

Abstract

This chapter intends to present an overview of Monte Carlo-type methods currently in use in the probabilistic analysis of large engineering structures. It starts with an introduction to the generation of multi-dimensional random quantities. Next, spatially distributed random properties, e.g., material or geometrical properties in continuum mechanics, are modeled as random fields. Approximations to random fields by means of Karhunen–Loève expansion and polynomial chaos expansion are introduced. These tools are employed to study the response of continuous structures with loads, material or geometrical properties given by random fields. The main focus is on sensitivity analysis of large engineering structures, where small Monte Carlo sample sizes are mandatory. The transition to reliability is undertaken by means of the concept of tolerance intervals. Further, current sampling methods for accurate reliability estimates are discussed, and practical applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ICONA-project 2006–2008, supported by TransIT Innsbruck, ACOSTA-project 2008–2010, supported by The Austrian Research Promotion Agency, MDP-NE 2011–2013, supported by Astrium GmbH; main partners: Intales GmbH Engineering Solutions, Institute of Basic Sciences in Engineering Science and Institute of Mathematics, University of Innsbruck, Czech Technical University in Prague.

  2. 2.

    We follow the common statistical practice that random variables are denoted by capital letters, while their realizations are denoted by small letters.

References

  1. Aichinger, C.: Monte Carlo methods in iterative solvers. Diploma thesis, University of Innsbruck, Austria (2010)

    Google Scholar 

  2. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  3. Au, S.-K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16, 263–277 (2001)

    Article  Google Scholar 

  4. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analysis. Mech. Syst. Signal Process. 37, 4–29 (2013)

    Article  Google Scholar 

  5. Bhatia, R.: Perturbation Bounds for Matrix Eigenvalues. Longman, Harlow (1987)

    MATH  Google Scholar 

  6. Bolotin, V.V.: Statistical Methods in Structural Mechanics. Holden-Day, San Francisco (1969)

    MATH  Google Scholar 

  7. Bucher, C.: Adaptive sampling: an iterative fast Monte Carlo procedure. Struct. Saf. 5, 119–126 (1988)

    Article  Google Scholar 

  8. Bucher, C.: Asymptotic sampling for high-dimensional reliability analysis. Probab. Eng. Mech. 24, 504–510 (2009)

    Article  Google Scholar 

  9. Bucher, C.: Computational Analysis of Randomness in Structural Mechanics. CRC Press/Balkema, Leiden (2009)

    Book  Google Scholar 

  10. De Groof, V., Oberguggenberger, M., Haller, H., Degenhardt, R., Kling, A.: Quantitative assessment of random field models in finite element buckling analyses of composite cylinders. In: Eberhardsteiner, J., Böhm, H.J., Rammerstorfer, F.G. (eds.) CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna University of Technology, Wien (2012)

    Google Scholar 

  11. De Groof, V., Oberguggenberger, M., Haller, H., Degenhardt, R., Kling, A.: A case study of random field models applied to thin-walled composite cylinders in finite element analysis. In: Deodatis, G., Ellingwood, B.R., Frangopol, D.M. (eds.) Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, p. 379. CRC Press/Balkema, Leiden (2013)

    Google Scholar 

  12. De Groof, V., Oberguggenberger, M., Prackwieser, M., Schwarz, M.: Reliability analysis of shell structures. In: Barden, M., Ostermann, A. (eds.) Scientific Computing @ uibk, pp. 39–42. Innsbruck University Press, Innsbruck (2013)

    Google Scholar 

  13. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  14. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1993)

    Book  MATH  Google Scholar 

  15. European Committee for Standardization: EN 1990:2002. Eurocode: Basis of Structural Design. CEN, Brussels (2002)

    Google Scholar 

  16. Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R.: Analyzing Uncertainty in Civil Engineering. Springer, Berlin (2005)

    Book  Google Scholar 

  17. Freudenthal, A.N.: Safety and the probability of structural failure. Trans. ASCE 121, 1337–1397 (1956)

    Google Scholar 

  18. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  19. Graham, C., Talay, D.: Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations Of Stochastic Simulations. Springer, Berlin (2013)

    Book  Google Scholar 

  20. Helton, J.C., Johnson, J.D., Sallaberry, C.J., Storlie, C.B.: Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)

    Article  Google Scholar 

  21. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11, 311–334 (1982)

    Article  MATH  Google Scholar 

  22. International Standard: ISO 16269-6:2005. Statistical Interpretation of Data: Part 6: Determination of Statistical Tolerance Intervals. ISO, Geneva (2005)

    Google Scholar 

  23. Janouchová, E., Kučerová, A.: Competitive comparison of optimal designs of experiments for sampling-based sensitivity analysis. Comput. Struct. 124, 47–60 (2013)

    Article  Google Scholar 

  24. King, J.: Stochastic simulation methods in sensitivity analysis. Diploma thesis, University of Innsbruck, Austria (2007)

    Google Scholar 

  25. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments. Springer Science+Business Media LLC, New York (2008)

    MATH  Google Scholar 

  26. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  27. Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applications and Computation. Wiley, New Jersey (2009)

    Book  Google Scholar 

  28. Kruskal, W.: Relative importance by averaging over orderings. Am. Stat. 41, 6–10 (1987)

    MATH  Google Scholar 

  29. Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, New York (2010)

    Book  Google Scholar 

  30. Loève, M.: Probability Theory, vol. II, 4th edn. Springer, New York (1978)

    Google Scholar 

  31. Martz, H.F., Waller, R.A.: Bayesian Reliability Analysis. Wiley, Chichester (1982)

    MATH  Google Scholar 

  32. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis, 5th edn. Wiley, New York (2012)

    MATH  Google Scholar 

  33. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  34. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Google Scholar 

  35. Oberguggenberger, M.: Analysis and computation with hybrid random set stochastic models. In: Deodatis, G., Ellingwood, B.R., Frangopol, D.M. (eds.) Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, p. 93. CRC Press/Balkema, Leiden (2013)

    Google Scholar 

  36. Oberguggenberger, M.: Combined methods in nondeterministic mechanics. In: Elishakoff, I., Soize, C. (eds.) Nondeterministic Mechanics, pp. 263–356. Springer, Wien (2013)

    Google Scholar 

  37. Oberguggenberger, M., Aichinger, C., Caillaud, B., Haller, H., Roth, H.: Simulation tools for assessing the reliability and the design of shell structures. CD-ROM. In: Conference Proceedings, 4th International Conference on “Supply on the Wings”, Frankfurt. AIRTEC Frankfurt, Paper No. D13 (2009)

    Google Scholar 

  38. Oberguggenberger, M., King, J., Schmelzer, B.: Classical and imprecise probability methods for sensitivity analysis in engineering: a case study. Int. J. Approx. Reason. 50, 680–693 (2009)

    Article  Google Scholar 

  39. Oberguggenberger, M., Ostermann, A.: Analysis for Computer Scientists: Foundations, Methods, and Algorithms. Springer, London (2011)

    Book  Google Scholar 

  40. Ostermann, A.: Sensitivity analysis. In: Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R. (eds.) Analyzing Uncertainty in Civil Engineering, pp. 101–114. Springer, Berlin (2005)

    Chapter  Google Scholar 

  41. Riedinger, K.: Simulation of random fields for sensitivity analysis. Diploma thesis, University of Innsbruck, Austria (2010)

    Google Scholar 

  42. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  43. Roth, H.: Partial coefficient of determination. Internal Report, University of Innsbruck, Austria (2010)

    Google Scholar 

  44. Roth, H.: Sensitivity analysis with correlated variables. Diploma thesis, University of Innsbruck, Austria (2010)

    Google Scholar 

  45. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)

    Google Scholar 

  46. Schenk, C.A., Schuëller, G.I.: Uncertainty Assessment of Large Finite Element Systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  47. Schuëller, G.I. (ed.): A benchmark study on reliability in high dimensions. Special Issue. Struct. Saf. 29, 165–252 (2007)

    Google Scholar 

  48. Schuëller, G.I., Pradlwarter, H.J., Koutsourelakis, P.S.: A critical appraisal of reliability estimation procedures for high dimensions. Probab. Eng. Mech. 19, 463–474 (2004)

    Article  Google Scholar 

  49. Schwarz, M.: Monte Carlo based reliability analysis. Master thesis, University of Innsbruck, Austria (2013)

    Google Scholar 

  50. Shao, J., Tu, D.-S.: The Jackknife and Bootstrap. Springer, New York (1995)

    Book  MATH  Google Scholar 

  51. Sobol, I.M.: Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Experiment 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  52. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zuev, K.M., Beck, J.L., Au, S.-K., Katafygiotis, L.S.: Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions. Comput. Struct. 92–93, 283–296 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The development, adaptation, and implementation in the mentioned research projects is chiefly due to the essential contributions of Christoph Aichinger, Vincent De Groof, Julian King, Katharina Riedinger, Helene Roth, and Martin Schwarz [1, 10, 11, 24, 41, 44, 49]. Many ideas have been developed in discussions with Barbara Goller and Herbert Haller of Intales GmbH, whose continuous support I gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oberguggenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oberguggenberger, M. (2014). Sensitivity and Reliability Analysis of Engineering Structures: Sampling Based Methods. In: Hofstetter, G. (eds) Computational Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05933-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05933-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05932-7

  • Online ISBN: 978-3-319-05933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics