Skip to main content

Electrical Conduction at 180\(^{\circ }\) Ferroelectric Domain Walls

  • Chapter
  • First Online:
Ferroelectric Domain Walls

Part of the book series: Springer Theses ((Springer Theses))

  • 1424 Accesses

Abstract

From a structural point of view and for many purposes, most ferroelectric perovskites can be considered as band insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both reversible and irreversible distortions have been detected on a local scale in LiNbO\(_3\) [11], PZT [12], and BiFeO\(_3\) [13].

  2. 2.

    Diminishing the presence of adsorbates at the sample surface from ambient conditions to UHV, c-AFM current levels can increase up to an order of magnitude [3].

  3. 3.

    As can be seen in Fig. 5.6, the far left domain wall present significant meandering features corresponding to an average higher current level. We therefore considered the two middle domain walls.

References

  1. P. Zubko, D.J. Jung, J.F. Scott, Electrical characterization of PbZr\(_{0.4}\)Ti\(_{0.6}\)O\(_3\) capacitors. J. Appl. Phys. 100, 114113 (2006)

    Article  ADS  Google Scholar 

  2. A. Aird, E.K.H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO\(_{3-x}\). J. Phys. Condens. Matter 10, 377 (1998)

    Article  ADS  Google Scholar 

  3. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Want, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)

    Article  ADS  Google Scholar 

  4. S. Farokhipoor, B. Noheda, Conduction through 71\(^\circ \) domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011)

    Article  ADS  Google Scholar 

  5. J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E.K.H. Salje, H. Wromeester, M. Salmeron, R. Ramesh, Domain wall conductivity in La-doped BiFeO\(_3\). Phys. Rev. Lett. 105, 197603 (2010)

    Article  ADS  Google Scholar 

  6. Y.-P. Chiu, Y.-T. Chen, B.-C. Huang, M.-C. Shih, J.-C. Yang, Q. He, C.-W. Liang, J. Seidel, Y.-C. Chen, R. Ramesh, Y.-H. Chu, Atomic-scale evolution of local electronic structure across multiferroic domain walls. Adv. Mat. 23, 1530 (2011)

    Article  Google Scholar 

  7. D.I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Íñiguez, Ph Ghosez, Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 77, 165107 (2008)

    Article  ADS  Google Scholar 

  8. C.-L. Jia, K.W. Urban, M. Alexe, D. Hesse, I. Vrejoiu, Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O\(_3\). Science 331, 1420 (2011)

    Article  ADS  Google Scholar 

  9. L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003)

    Article  ADS  Google Scholar 

  10. P. Maksymovych, J. Seidel, Y.H. Chu, P. Wu, A.P. Baddorf, L.-Q. Chen, S.V. Kalinin, R. Ramesh, Dynamic conductivity of ferroelectric domain walls in BiFeO\(_3\). Nano Lett. 11, 1906 (2011)

    Article  ADS  Google Scholar 

  11. V.R. Aravind, A.N. Morozovska, S. Bhattacharyya, D. Lee, S. Jesse, I. Grindberg, Y.L. Li, S. Choudhury, P. Wu, K. Seal, A.M. Rappe, S.V. Svechnikov, E.A. Eliseev, S.R. Phillpot, L.Q. Chen, V. Gopalan, S.V. Kalinin, Correlated polarization switching in the proximity of a 180\(^{\circ }\) domain wall. Phys. Rev. B 82, 02411 (2010)

    Article  Google Scholar 

  12. V. Anbusathaiah, S. Jesse, M.A. Arredondo, F.C. Kartawidjaja, O.S. Ovchinnikov, J. Wang, S.V. Kalinin, V. Nagarajan, Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater. 58, 5316 (2010)

    Article  Google Scholar 

  13. N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y.H. Chu, A.P. Baddorf, L.Q. Chen, R. Ramesh, S.V. Kalinin, Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotech. 4, 868 (2009)

    Article  ADS  Google Scholar 

  14. J. Guyonnet, I. Gaponenko, S. Gariglio, P. Paruch, Conduction at domain walls in insulating Pb(Zr\(_{0.2}\)Ti\(_{0.8}\))O\(_3\) thin films. Adv. Mat. 23, 5377 (2011).

    Google Scholar 

  15. Y. Du, X.L. Wang, D.P. Chen, S.X. Dou, Z.X. Cheng, Domain wall conductivity in oxygen deficient multiferroic YMnO\(_3\) single crystals. Appl. Phys. Lett. 99, 252107 (2011)

    Article  Google Scholar 

  16. D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N.A. Spaldin, R. Ramesh, M. Fiebig, Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012)

    Article  ADS  Google Scholar 

  17. W. Wu, Y. Horibe, N. Lee, S.-W. Cheong, J.R. Guest, Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012)

    Article  ADS  Google Scholar 

  18. M. Schröeder, A. Haussmann, A. Thiessen, E. Soergel, T. Woike, L.M. Eng, Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mat. 22, 3936 (2012)

    Article  Google Scholar 

  19. E.A. Eliseev, A.N. Morozovska, G.S. Svechnikov, V. Gopalan, V.Y. Shur, Static conductivity of charged domain wall in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011)

    Article  ADS  Google Scholar 

  20. T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev, N. Setter, Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Comm. 3, 748 (2011)

    Article  Google Scholar 

  21. P. Maksymovych, M. Pan, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin, Scaling and disorder analysis of local I-V curves from ferroelectric thin films of lead zirconate titanate. Nanotechnology 22, 254031 (2011)

    Article  ADS  Google Scholar 

  22. Y.L. Wang, A.K. Tagantsev, D. Damjanovic, N. Setter, Giant domain wall contribution to the dielectric susceptibility in BaTiO3 single crystals. Appl. Phys. Lett. 91, 062905 (2007)

    Article  ADS  Google Scholar 

  23. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  24. C. Blaser, P. Paruch, Minimum domain size and stability in carbon nanotube-ferroelectric devices. Appl. Phys. Lett. 101, 142906 (2012)

    Article  ADS  Google Scholar 

  25. D.S. Jeong, C.S. Hwang, Tunneling-assisted Poole-Frenkel conduction mechanism in HfO\(_2\) thin films. J. Appl. Phys. 98, 113701 (2005)

    Article  ADS  Google Scholar 

  26. I. Gaponenko, J. Karthik, L.W. Martin, P. Paruch. Manuscript in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Guyonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guyonnet, J. (2014). Electrical Conduction at 180\(^{\circ }\) Ferroelectric Domain Walls. In: Ferroelectric Domain Walls. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05750-7_5

Download citation

Publish with us

Policies and ethics