Skip to main content

The Effect of Internal Parameters on Biohydrogen Production in Batch Microbial Electrolysis Cell Reactor

  • Conference paper
  • First Online:
ICREGA’14 - Renewable Energy: Generation and Applications

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Production of biohydrogen has the potential to be a renewable energy alternative to current technology. Microbial electrolysis cell (MEC) system is new bio-electrochemical processes that are capable of producing hydrogen gas and has higher efficiency when compared with other processes. This study describes the mathematical model of MEC for hydrogen production from wastewater batch reactor. The model is based on material balances with the integration of bio-electrochemical reactions describing the steady-state behaviour of biomass growth, consumption of substrates, hydrogen production and power current characteristics. The model predicts the concentration of anodophilic, acetoclastic methanogenic and hydrogenotrophic methanogenic microorganisms. In this study the effect of varying changes of initial concentration, effect of stoichiometric and kinetic parameters on MEC in a batch reactor to be used with open-loop identification test. In this model will also be examined effect of competition between the three microbial populations between anodophilic, hydrogenotrophic and acetoclastic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( S \) :

Substrate concentration (mg-S L−1)

\( x_{a} \) :

Concentration of anodophilic microorganisms

\( x_{m} \) :

Concentration of acetoclastic microorganism

\( x_{h} \) :

Concentration of hydrogenotrophic microorganisms

\( Q_{{H_{2} }} \) :

Hydrogen production rate (mL/day)

\( q_{max,a} \) :

Maximum reaction rate of the anodophilic microorganism [mg-A mg-x−1 d−1]

\( q_{max,m} \) :

Maximum reaction rate of the acetoclastic methanogenic microorganism [mg-A mg-x−1 d−1]

\( K_{S,a} \) :

Half-rate (Monod) constant of the anodophilic microorganism [mg-A l−1 or mg-M l−1]

\( K_{S,m} \) :

Half-rate (Monod) constant of the acetoclastic methanogenic microorganism [mg-A l−1 or mg-M l−1]

\( K_{M} \) :

Mediator half-rate constant [mg-M l−1]

\( K_{d,a} \) :

Microbial decay rates of the anodophilic microorganism [d−1]

\( K_{d,m} \) :

Microbial decay rates of the acetoclastic methanogenic microorganism [d−1]

\( K_{d,h} \) :

Microbial decay rates of the hydrogenotrophic microorganism [d−1]

\( K_{h} \) :

Half-rate constant [mg l−1]

\( Y_{M} \) :

Oxidized mediator yield [mg-M mg-A−1]

\( Y_{{H_{2} }} \) :

Dimensionless cathode efficiency [dimensionless]

\( Y_{h} \) :

Half-rate constant [mg l−1]

\( V_{r} \) :

Anodic compartment volume [l]

\( m \) :

Number of electrons transferred per mol of H2 [mol-e mol-H −12 ]

\( F \) :

Faraday constant [A d mol-e−1]

\( R \) :

Ideal gas constant [ml-H2 atm K mol-H −12 ]

\( T \) :

MEC temperature [K]

\( P \) :

Anode compartment pressure [atm]

\( E_{applied} \) :

Electrode potentials [V]

\( R_{ext} \) :

External resistance [Ω]

\( R_{int} \) :

Internal resistance [Ω]

\( I_{MEC} \) :

MEC current [A]

\( E_{CEF} \) :

Counter-electromotive force for the MEC [V]

\( M_{Total} \) :

Total mediator weight percentage [mg-M mg-x−1]

\( M_{red} \) :

Reduced mediator fraction per each electricigenic microorganism (mg-M mg-x−1)

\( M_{ox} \) :

Oxidized mediator fraction per each electricigenic microorganism (mg-M mg-x−1)

\( A_{sur,A} \) :

Anode surface area [m2]

\( \mu_{max,a} \) :

Maximum growth rate of the anodophilic microorganism [d−1]

\( \mu_{max,h} \) :

Maximum growth rate of the hydrogenotrophic microorganism [d−1]

\( \beta \) :

Reduction or oxidation transfer coefficient [dimensionless]

\( i_{0} \) :

Exchange current density in reference conditions [A m2−1]

\( \gamma \) :

Mediator molar mass [mg-M mol −1med ]

\( \upalpha_{1} \) :

Dimensionless biofilm retention constant for layers 1

\( \upalpha_{2} \) :

Dimensionless biofilm retention constant for layers 2

\( \upmu_{\text{h}} \) :

Hydrogen growth rate [d−1]

\( \upeta_{\text{ohm}} \) :

Ohmic losses due to resistance to the flow of ion in the electrolyte and electrode [V]

\( \upeta_{\text{conc}} \) :

Concentration loss due to mass transfer limitation [V]

\( \upeta_{\text{act}} \) :

Activation loss due to activation energies and electrochemical reactions [V]

References

  1. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  2. O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, J.-P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)

    Article  Google Scholar 

  3. D.R. Bond, D.E. Holmes, L.M. Tender, D.R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554), 483–485 (2002)

    Article  Google Scholar 

  4. Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 42, 8101–8107 (2008)

    Article  Google Scholar 

  5. G.S. Jadhav, M.M. Ghangrekar, Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 100, 717–723 (2009)

    Article  Google Scholar 

  6. B.E. Logan, B. Hamelers, R.A. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)

    Article  Google Scholar 

  7. B.E. Logan, J.M. Regan, Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14, 512–518 (2006)

    Article  Google Scholar 

  8. B.E. Logan, Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1665–1671 (2010)

    Article  Google Scholar 

  9. R.F. Mann, J.C. Amphlett, M.A.I. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources 86, 173–180 (2000)

    Article  Google Scholar 

  10. R.P. Pinto, M. Perrier, B. Tartakovsky, B. Srinivasan, Performance analyses of microbial fuel cells operated in series, in DYCOPS: Proceedings International Symposium on Dynamics and Control of Process of Systems, Leuven, Belgium (2010)

    Google Scholar 

  11. R.P. Pinto, B. Srinivasan, S.R. Guiot, B. Tartakovsky, The effect of real-time external resistance optimization on microbial fuel cell performance. Water Res. 45(4), 1571–1578 (2011)

    Google Scholar 

  12. R.P. Pinto, B. Srinivasan; M.F. Manuel, B. Tartakovsky, A unified model for electricity and hydrogen production in microbial electrochemical cells, in Preprints of the 18th International Federation of Automatic Control (IFAC) world congress, Milano, Italy, 28 Aug–2 Sept 2011

    Google Scholar 

  13. R.A. Rozendal, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, C.J.N. Buisman, Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31(12), 1632–1640 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the “IPPP-PV050/2011B” and “UMRG-RP006H-131CT” Program, University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Azwar, M., Hussain, M.A., Abdul-Wahab, A.K. (2014). The Effect of Internal Parameters on Biohydrogen Production in Batch Microbial Electrolysis Cell Reactor. In: Hamdan, M., Hejase, H., Noura, H., Fardoun, A. (eds) ICREGA’14 - Renewable Energy: Generation and Applications. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-05708-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05708-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05707-1

  • Online ISBN: 978-3-319-05708-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics