Skip to main content

f-Information Measures for Selection of Discriminative Genes from Microarray Data

  • Chapter
  • First Online:
Scalable Pattern Recognition Algorithms
  • 1419 Accesses

Abstract

Microarray technology is one of the important biotechnological means that allows to record the expression levels of thousands of genes simultaneously within a number of different samples. An important application of microarray gene expression data in functional genomics is to classify samples according to their gene expression profiles. Among the large amount of genes present in microarray gene expression data, only a small fraction of them is effective for performing a certain diagnostic test. In this regard, mutual information has been shown to be successful for selecting a set of relevant and nonredundant genes from microarray data. However, information theory offers many more measures such as the f-information measures that may be suitable for selection of genes from microarray gene expression data. This chapter presents different f-information measures as the evaluation criteria for gene selection problem. The performance of different f-information measures is compared with that of mutual information based on the predictive accuracy of naive Bayes classifier, k-nearest neighbor rule, and support vector machine. An important finding is that some f-information measures are shown to be effective for selecting relevant and nonredundant genes from microarray data. The effectiveness of different f-information measures, along with a comparison with mutual information, is demonstrated on several cancer data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Nat Acad Sci USA 96(12):6745–6750

    Article  Google Scholar 

  2. Baldi P, Long AD (2001) A bayesian framework for the analysis of microarray expression data: regularized \(t\)-test and statistical inferences of gene changes. Bioinformatics 17(6):509–519

    Article  Google Scholar 

  3. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z (2000) Tissue classification with gene expression profiles. J Comput Biol 7(3/4):559–584

    Article  Google Scholar 

  4. Blanco R, Larranaga P, Inza I, Sierra B (2004) Gene selection for cancer classification using wrapper approaches. Int J Pattern Recognit Artif Intell 18(8):1373–1390

    Article  Google Scholar 

  5. Bø T, Jonassen I (2002) New feature subset selection procedures for classification of expression profiles. Genome Biol 3(4):17

    Google Scholar 

  6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  7. Das SK (1971) Feature selection with a linear dependence measure. IEEE Trans Comput 20(9):1106–1109

    Article  Google Scholar 

  8. Dash M, Liu H (2000) Unsupervised feature selection. In: Proceedings of Pacific Asia conference on knowledge discovery and data mining, pp 110–121

    Google Scholar 

  9. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  10. Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the international conference on computational systems, Bioinformatics, pp 523–528

    Google Scholar 

  11. Domany E (2003) Cluster analysis of gene expression data. J Stat Phys 110(3–6):1117–1139

    Article  MATH  Google Scholar 

  12. Duda RO, Hart PE, Stork DG (1999) Pattern classification and scene analysis. Wiley, New York

    Google Scholar 

  13. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  MATH  MathSciNet  Google Scholar 

  14. Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96(456):1151–1160

    Article  MATH  MathSciNet  Google Scholar 

  15. Fox R, Dimmic M (2006) A two-sample Bayesian \(t\)-test for microarray data. BMC Bioinformatics 7(1):126

    Article  Google Scholar 

  16. Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22(14):e184–e190

    Article  Google Scholar 

  17. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  Google Scholar 

  18. Gruzdz A, Ihnatowicz A, Slezak D (2006) Interactive gene clustering—a case study of breast cancer microarray data. Inf Syst Front 8:21–27

    Article  Google Scholar 

  19. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  MATH  Google Scholar 

  20. Hall MA (2000) Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th international conference on machine learning, pp 359–366

    Google Scholar 

  21. Heydorn RP (1971) Redundancy in feature extraction. IEEE Trans Comput 20(9):1051–1054

    Article  MATH  Google Scholar 

  22. Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115

    Article  Google Scholar 

  23. Hu Q, Pan W, An S, Ma P, Wei J (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1(1–4):63–74

    Article  Google Scholar 

  24. Inza I, Larranaga P, Blanco R, Cerrolaza AJ (2004) Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 31(2):91–103

    Article  Google Scholar 

  25. Jafari P, Azuaje F (2006) An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decis Mak 6(1):27

    Article  Google Scholar 

  26. Jain AK, Dubes RC (1988) Algorithms clustering data. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  27. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 16(11):1370–1386

    Article  Google Scholar 

  28. Jiang H, Deng Y, Chen HS, Tao L, Sha Q, Chen J, Tsai CJ, Zhang S (2004) Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 5(1):81

    Article  Google Scholar 

  29. Jirapech-Umpai T, Aitken S (2005) Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics 6(1):148

    Article  Google Scholar 

  30. Kiranagi BB, Guru DS, Ichino M (2007) Exploitation of multivalued type proximity for symbolic feature selection. In: Proceedings of the international conference on computing: theory and applications, 2007

    Google Scholar 

  31. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  MATH  Google Scholar 

  32. Kononenko I, Simec E, Sikonja MR (1997) Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl Intell 7:39–55

    Article  Google Scholar 

  33. Lee JW, Lee JB, Park M, Song SH (2005) An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 48(4):869–885

    Article  MATH  MathSciNet  Google Scholar 

  34. Li J, Su H, Chen H, Futscher BW (2007) Optimal search-based gene subset selection for gene array cancer classification. IEEE Trans Inf Technol Biomed 11(4):398–405

    Article  Google Scholar 

  35. Li L, Weinberg CR, Darden TA, Pedersen LG (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17(12):1131–1142

    Article  Google Scholar 

  36. Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15):2429–2437

    Article  Google Scholar 

  37. Liao JG, Chin KV (2007) Logistic regression for disease classification using microarray data: model selection in a large \(p\) and small \(n\) case. Bioinformatics 23(15):1945–1951

    Article  Google Scholar 

  38. Liu Q, Sung A, Chen Z, Liu J, Chen L, Qiao M, Wang Z, Huang X, Deng Y (2011) Gene selection and classification for cancer microarray data based on machine learning and similarity measures. BMC Genomics 12(Suppl 5):S1

    Article  Google Scholar 

  39. Liu X, Krishnan A, Mondry A (2005) An entropy based gene selection method for cancer classification using microarray data. BMC Bioinformatics 6(1):76

    Article  Google Scholar 

  40. Loennstedt I, Speed TP (2002) Replicated microarray data. Statistica Sinica 12:31–46

    MATH  MathSciNet  Google Scholar 

  41. Lyons-Weiler J, Patel S, Becich M, Godfrey T (2004) Tests for finding complex patterns of differential expression in cancers: towards individualized medicine. BMC Bioinformatics 5(1):110

    Article  Google Scholar 

  42. Ma S, Huang J (2005) Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 21(24):4356–4362

    Article  Google Scholar 

  43. Maji P (2009) \(f\)-information measures for efficient selection of discriminative genes from microarray data. IEEE Trans Biomed Eng 56(4):1063–1069

    Article  MathSciNet  Google Scholar 

  44. Maji P, Pal SK (2010) Fuzzy-rough sets for information measures and selection of relevant genes from microarray data. IEEE Trans Syst Man Cybern B Cybern 40(3):741–752

    Article  Google Scholar 

  45. Mamitsuka H (2006) Selecting features in microarray classification using ROC curves. Pattern Recognit 39(12):2393–2404

    Article  MATH  Google Scholar 

  46. McLachlan GJ, Do KA, Ambroise C (2004) Analyzing microarray gene expression data. Wiley, Hoboken

    Book  MATH  Google Scholar 

  47. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24(3):301–312

    Article  Google Scholar 

  48. Miyano S, Imoto S, Sharma A (2012) A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans Comput Biol Bioinf 9(3):754–764

    Article  Google Scholar 

  49. Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW (2001) On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 8(1):37–52

    Article  Google Scholar 

  50. Ooi CH, Tan P (2003) Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19(1):37–44

    Article  Google Scholar 

  51. Pan W (2003) On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics 19(11):1333–1340

    Article  Google Scholar 

  52. Pang H, George SL, Hui K, Tong T (2012) Gene selection using iterative feature elimination random forests for survival outcomes. IEEE/ACM Trans Comput Biol Bioinf 9(5):1422–1431

    Article  Google Scholar 

  53. Park PJ, Pagano M, Bonetti M (2001) A nonparametric scoring algorithm for identifying informative genes from microarray data. In: Proceedings of Pacific symposium on biocomputing, pp. 52–63

    Google Scholar 

  54. Pavlidis P, Poirazi P (2006) Individualized markers optimize class prediction of microarray data. BMC Bioinformatics 7(1):345

    Article  Google Scholar 

  55. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  56. Pluim JPW, Maintz JBA, Viergever MA (2004) \(f\)-information measures in medical image registration. IEEE Trans Med Imaging 23(12):1508–1516

    Article  Google Scholar 

  57. Ruiz R, Riquelme JC, Ruiz JSA (2006) Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognit 39(12):2383–2392

    Article  Google Scholar 

  58. Saeys Y, Inza I, Larraaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Article  Google Scholar 

  59. Shah M, Marchand M, Corbeil J (2012) Feature selection with conjunctions of decision stumps and learning from microarray data. IEEE Trans Pattern Anal Mach Intell 34(1):174–186

    Article  Google Scholar 

  60. Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4):269–276

    Article  Google Scholar 

  61. Slavkov I, Gjorgjioski V, Struyf J, Deroski S (2010) Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol BioSyst 6:729–740

    Article  Google Scholar 

  62. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5):631–643

    Article  Google Scholar 

  63. Thomas JG, Olson JM, Tapscott SJ, Zhao LP (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res 11(7):1227–1236

    Article  Google Scholar 

  64. Tusher V, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci USA 98:5116–5121

    Article  MATH  Google Scholar 

  65. Uriarte RD, de Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(1):3

    Article  Google Scholar 

  66. Vajda I (1989) Theory of statistical inference and information. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  67. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  68. Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KFX, Mewes HW (2005) Gene selection from microarray data for cancer classification—a machine learning approach. Comput Biol Chem 29(1):37–46

    Article  MATH  Google Scholar 

  69. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, Nevins JR (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Nat Acad Sci USA 98(20):11462–11467

    Google Scholar 

  70. Xing EP, Jordan MI, Karp RM (2001) Feature selection for high-dimensional genomic microarray data. In: Proceedings of the 18th international conference on machine learning, pp 601–608

    Google Scholar 

  71. Xiong M, Fang X, Zhao J (2001) Biomarker identification by feature wrappers. Genome Res 11(11):1878–1887

    Google Scholar 

  72. Yang F, Mao KZ (2011) Robust feature selection for microarray data based on multicriterion fusion. IEEE/ACM Trans Comput Biol Bioinf 8(4):1080–1092

    Article  Google Scholar 

  73. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143

    Article  Google Scholar 

  74. Yeung K, Bumgarner R (2003) Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol 4(12):R83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Maji .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maji, P., Paul, S. (2014). f-Information Measures for Selection of Discriminative Genes from Microarray Data. In: Scalable Pattern Recognition Algorithms. Springer, Cham. https://doi.org/10.1007/978-3-319-05630-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05630-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05629-6

  • Online ISBN: 978-3-319-05630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics