Skip to main content

Anisotropy of Magnetic Susceptibility

  • Chapter
Understanding an Orogenic Belt

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Anisotropy of magnetic susceptibility is an important technique which depicts preferred orientation of magnetic minerals in a rock or unconsolidated sediments. Hence the property is used for study of primary structures and rock fabric. The technique is non-destructive and can be used in nearly all types of rocks because it does not need a rock to contain specific strain markers like deformed fossils, reduction spots, ooids, etc. The method has an advantage as it can determine weak deformation even where lineation and foliation have not developed. In rocks with well developed tectonic fabrics, the principal magnetic susceptibility directions are closely related to orientation of structural features (e.g. fold, fault, foliation, lineation). Different types of AMS fabrics are described. Differences between magnetic and petrofabric strains are highlighted. Importance of sampling in a region of superimposed deformation is described. It is emphasized that objectives of the study should be formulated prior to selection of sample sites. Hrouda diagram is described for understanding the roles of simple and pure shear deformations in a region of simultaneous development of folding and thrusting. The technique has been successfully employed to ascertain the displacement patterns along some of the prominent Lower Himalayan thrusts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubourg C, Rochette P, Bergmuller F (1995) Composite magnetic fabric in weakly deformed black shales. Tectonophysics 87:267–278

    Google Scholar 

  • Averbuch O, Lamotte DF, Kissel C (1992) Magnetic fabric as a structural indicator of the deformation path within a fold-thrust structure: a test case from the Corbieres (NE Pyrenees, France). J Struct Geol 14:461–474

    Article  Google Scholar 

  • Borradaile GJ, Hamilton T (2004) Magnetic fabrics may proxy as neotectonic stress trajectories, Polis rift, Cyprus. Tectonics 23(TC1001):1–11. doi:10.1029/2002TC001434

    Article  Google Scholar 

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93

    Article  Google Scholar 

  • Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1551

    Article  Google Scholar 

  • Borradaile GJ, Tarling DH (1981) The influence of deformation mechanisms on magnetic fabric in weakly deformed rocks. Tectonophysics 77:151–168

    Article  Google Scholar 

  • Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156:1–20

    Article  Google Scholar 

  • Dunlop D, Ozdemir O (1997) Rock magnetism, fundamentals and frontiers. Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, p 272

    Book  Google Scholar 

  • Evans MA, Lewchuk MT, Elmore RD (2003) Strain partitioning of deformation mechanism in limestones: Examining the relationship of strain and anisotropy of magnetic susceptibility (AMS). J Struct Geol 25:1525–1549

    Article  Google Scholar 

  • Graham JW (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol Soc Am Bull 65:1257–1258

    Google Scholar 

  • Housen BA, van der Pluijm BA (1991) Slaty cleavage development and magnetic anisotropy fabrics (AMS and ARMA). J Geophys Res 96:9937–9946

    Article  Google Scholar 

  • Housen BA, Tobin HJ, Labaume P, Leitch EC, Maltman AJ, Ocean Drilling Program Leg 156 Shipboard Science Party (1996) Strain decoupling across the decollement of the Barbados accretionary prism. Geology 24:127–130. doi:10.1130/0091-7613

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hrouda F (1991) Models of magnetic anisotropy variations in sedimentary thrust sheets. Tectonophysics 185:203–210

    Article  Google Scholar 

  • Hrouda F, Janak F (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34:135–148

    Article  Google Scholar 

  • Ising G (1942) On the magnetic properties of varved clay. Arkiv for Matematik, Astronomi och Fysik 29A:1–37

    Google Scholar 

  • Jayangondaperumal R, Dubey AK, Kumar BS, Wesnousky SK, Sangode SJ (2010) Magnetic fabrics indicating Late Quaternary seismicity in the Himalayan foothills. Int J Earth Sci 99:S265–S278. doi:10.1007/s00531-009-0494-5

    Article  Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics 79:T63–T67

    Article  Google Scholar 

  • Kissel C, Barrier E, Laj C, Lee TQ (1986) Magnetic fabric in ‘undeformed’ marine clays from compressional zones. Tectonics 5:769–781

    Article  Google Scholar 

  • Lee TQ, Angelier J (2000) Tectonic significance of magnetic susceptibility fabrics in Plio-Quaternary mudstones of south-western foothills, Taiwan. Earth Planet Space 52:527–538

    Article  Google Scholar 

  • Levi S, Nabelek J, Yeats RS (2005) Paleomagnetism based limits on earthquake magnitudes in northwestern metropolitan Los Angeles, California, USA. Geology 33:401–404. doi:10.1130/G21190.1

    Article  Google Scholar 

  • Levi T, Weinberger R, Aifa T, Eyal Y, Marco S (2006) Earthquake-induced clastic dikes detected by anisotropy of magnetic susceptibility. Geology 34:69–72. doi:10.1130/G22001.1

    Article  Google Scholar 

  • Pares JM, van der Pluijm BA (2002) Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics 350:283–298

    Article  Google Scholar 

  • Pares JM (2004) How deformed are weakly deformed mudrocks? Insights from magnetic anisotropy. In: Martin-Hernandez F, Aubourg C, Jackson M (eds) Magnetic fabrics: methods and applications, vol 238. Special Publication Geological Society of London, pp 191–203

    Google Scholar 

  • Pares JM, van der Pluijm BA, Dinares-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics 307:1–14

    Article  Google Scholar 

  • Robion P, Grelaud S, Frizon de Lamotte D (2007) Pre-folding magnetic fabrics in fold-and-thrust belts: why the apparent internal deformation of the sedimentary rocks from the Minervois Basin (NE Pyrenees, France) is so high compared to the Potwar Basin (SW Himalaya, Pakistan)? Sed Geol 196:181–200

    Article  Google Scholar 

  • Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1015–1020

    Article  Google Scholar 

  • Sagnotti L, Faccenna C, Funiciello R, Mattei M (1994) Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of central Italy. J Struct Geol 16:1243–1257

    Article  Google Scholar 

  • Sagnotti L, Speranza F (1993) Magnetic fabric analysis of the Plio-Pleistocene clayey units of the Sant’Arcangelo Basin, southern Italy. Phys Earth Planet Inter 77:165–176

    Article  Google Scholar 

  • Sagnotti L, Speranza F, Winkler A, Mattei M, Funiciello R (1998) Magnetic fabric of clay sediments from the external northern Apennines (Italy). Phys Earth Planet Inter 105:73–93

    Article  Google Scholar 

  • Saint-Bezar B, Hebert RL, Aubourg C, Robion P, Swennen R, de Lamotte DF (2002) Magnetic fabric and petrographic investigation of hematite-bearing sandstones within ramp-related folds: examples from the South Atlas Front (Morocco). J Struct Geol 24:1507–1520

    Article  Google Scholar 

  • Schwehr K, Tauxe L (2003) Characterization of soft sediment deformation: detection of cryptoslumps using magnetic methods. Geology 31:203–206

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman & Hall, London 217 pp

    Google Scholar 

  • Voight W, Kinoshita S (1907) Bestimmung absoluter Werte von Magnetiserungszahlen, inbesondere fur Kristalle. Annale der Physic 24:492–514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Dubey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubey, A.K. (2014). Anisotropy of Magnetic Susceptibility. In: Understanding an Orogenic Belt. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-05588-6_2

Download citation

Publish with us

Policies and ethics