Skip to main content

Abstract

The Big Bang–Big Crunch (BB–BC) method developed by Erol and Eksin [1] consists of two phases: a Big Bang phase, and a Big Crunch phase. In the Big Bang phase, candidate solutions are randomly distributed over the search space. Similar to other evolutionary algorithms, initial solutions are spread all over the search space in a uniform manner in the first Big Bang. Erol and Eksin [1] associated the random nature of the Big Bang to energy dissipation or the transformation from an ordered state (a convergent solution) to a disorder or chaos state (new set of solution candidates).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erol OK, Eksin I (2006) New optimization method: Big Bang–Big Crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  2. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 87:1129–1140

    Article  Google Scholar 

  3. Kaveh A, Talatahari S (2010) Optimal design of Schwedler and ribbed domes; hybrid Big Bang-Big Crunch algorithm. J Construct Steel Res 66:412–419

    Article  Google Scholar 

  4. Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space trusses. Int J Space Struct 23(3):167–181

    Article  Google Scholar 

  5. Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, Edinburgh

    Google Scholar 

  6. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27(1):155–182

    Article  MATH  Google Scholar 

  7. He S, Wu QH, Wen JY, Saunders JR, Paton RC (2004) A particle swarm optimizer with passive congregation. Biosystem 78:135–147

    Article  Google Scholar 

  8. Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng ASCE 118(5):1233–1250

    Article  Google Scholar 

  9. Camp CV, Bichon J (2005) Design of steel frames using ant colony optimization. J Struct Eng ASCE 131:369–379

    Article  Google Scholar 

  10. Kaveh A, Shojaee S (2007) Optimal design of skeletal structures using ant colony optimisation. Int J Numer Methods Eng 70(5):563–581

    Article  MATH  Google Scholar 

  11. Van Laarhoven PJM, Aarts EHL (1998) Simulated annealing, theory and applications. Kluwer Academic, Boston, MA

    Google Scholar 

  12. Dorigo M (1992) Optimization, Learning and Natural Algorithms. Ph.D thesis. Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT (in Italian)

    Google Scholar 

  13. Dorigo M, Caro GD, Gambardella LM (1999) An algorithm for discrete optimization. Artif Life 5:137–172

    Article  Google Scholar 

  14. Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct Eng ASCE 133:999–1008

    Article  Google Scholar 

  15. Kaveh A, Talatahari S (2008) A hybrid particle swarm and ant colony optimization for design of truss structures. Asian J Civil Eng 9(4):329–348

    Google Scholar 

  16. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

    Article  Google Scholar 

  17. Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms. Struct Multidiscip Optim 25:261–269

    Article  Google Scholar 

  18. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Article  Google Scholar 

  19. Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130(5):741–751

    Article  Google Scholar 

  20. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588

    Article  Google Scholar 

  21. Erbatur F, Hasancebi O, Tutuncil I, Kihc H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75:209–224

    Article  Google Scholar 

  22. American Institute of Steel Construction (AISC) (1989) Manual of steel construction-allowable stress design, 9th edn. American Institute of Steel Construction (AISC), Chicago, IL

    Google Scholar 

  23. Salajegheh E, Vanderplaats GN (1986/87) An efficient approximation method for structural synthesis with reference to space structures. Int J Space Struct 2:165–175

    Google Scholar 

  24. Saka MP, Kameshki ES (1998) Optimum design of nonlinear elastic framed domes. Adv Eng Softw 29(7–9):519–528

    Article  Google Scholar 

  25. Makowski ZS (1984) Analysis, design and construction of braced domes. Granada Publishing Ltd, London

    Google Scholar 

  26. Coates RC, Coutie MG, Kong FK (1972) Structural analysis. Thomas Nelson & Sons Ltd., London

    Book  Google Scholar 

  27. Saka MP (2007) Optimum geometry design of geodesic domes using harmony search algorithm. Adv Struct Eng 10:595–606

    Article  Google Scholar 

  28. Saka MP (2007) Optimum topological design of geometrically nonlinear single layer latticed domes using coupled genetic algorithm. Comput Struct 85:1635–1646

    Article  Google Scholar 

  29. American Institute of Steel Construction (AISC) (1991) Manual of steel construction-load resistance factor design, 3rd edn. AISC, Chicago, IL

    Google Scholar 

  30. Ekhande SG, Selvappalam M, Madugula KS (1989) Stability functions for three-dimensional beam-columns. J Struct Eng ASCE 115:467–479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaveh, A. (2014). Modified Big Bang–Big Crunch Algorithm. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-05549-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05549-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05548-0

  • Online ISBN: 978-3-319-05549-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics