Skip to main content

Study of the Thermal Decomposition of Some Components of Biomass by Desorption Mass Spectrometry

  • Conference paper
  • First Online:
International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 155))

Abstract

The investigation of thermal transformations of lignin samples have been carried out using temperature programmed desorption mass spectrometry method (TPD-MS). Main stages and products of lignin pyrolysis have been identified. The first stages (Tmax = 230 °C and Tmax = 300 °C) are attributed to thermal transformations of lignin peripheral polysaccharide fragments such as hemicellulose and cellulose respectively. The second stage (Tmax = 335 °C) is associated with desorption of lignin structural elements in the molecular forms as a result of depolymerization processes of polymeric blocks of lignin. The third stage (Tmax = 370 °C) correspond to a deeper decomposition of lignin and characterized by desorption of smaller structural fragments in molecular forms (m/z = 110, pyrocatechol). Pressure–temperature curves of pyrolysis of lignin samples have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Oasmaa, Y. Solantausta, V. Arpiainen, E. Kuoppala, K. Sipila, Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 24(2), 1380–1388 (2010)

    Article  Google Scholar 

  2. M. Calonaci, R. Grana, E. Barker Hemings, G. Bozzano, M. Dente, E. Ranzi, Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuels 24(10), 5727–5734 (2010)

    Google Scholar 

  3. S. Thangalazhy-Gopakumar, S. Adhikari, R.B. Gupta, S.D. Fernando, Influence of pyrolysis operating conditions on bio-oil components: a microscale study in a pyroprobe. Energy Fuels 25(3), 1191–1199 (2011)

    Article  Google Scholar 

  4. C.A. Mullen, A.A. Boateng, K.B. Hicks, N.M. Goldberg, R.A. Moreau, Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams. Energy Fuels 24(1), 699–706 (2010)

    Article  Google Scholar 

  5. D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)

    Article  Google Scholar 

  6. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)

    Article  Google Scholar 

  7. H. Ben, A.J. Ragauskas, Pyrolysis of kraft lignin with additives. Energy Fuels 25(10), 4662–4668 (2011)

    Article  Google Scholar 

  8. A. Gandini, The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem. 13, 1061–1083 (2011)

    Article  Google Scholar 

  9. A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6), 2411–2502 (2007)

    Article  Google Scholar 

  10. K.V. Sarkanen, Lignins: Occurrence, Formation, Structure and Reactions (Wiley, New York, 1971)

    Google Scholar 

  11. R. Gross, A. Kumar, B. Kalra, Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 101(7), 2097–2124 (2001)

    Article  Google Scholar 

  12. S. Burton, Oxidizing enzymes as biocatalyst. Trends Biotechnol. 21, 543–549 (2003)

    Article  Google Scholar 

  13. Y.N. Kupriyanovich, S.A. Medvedeva, A.V. Rokhin, L.V. Kanitskaya, Regioselectivity of ferulic acid polymerization catalyzed by oxidases. Russian J. Bioorg. Chem. 33(5), 516–522 (2007)

    Article  Google Scholar 

  14. H. Shindo, T. Marumoto, T. Higashi, Behavior of phenolic substances in the decaying process of plants. Soil Sci. Plant Nutr. 25(4), 591–600 (1979)

    Article  Google Scholar 

  15. A.A. Rosatella, S.P. Simeonov, R.F.M. Frade, C.A.M. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Crit. Rev. Green Chem. 13, 754–793 (2011)

    Article  Google Scholar 

  16. T.V. Kulik, Mass spectrometry of carbohydrate fragments—terminal groups of receptors molecules in condensed state and in adsorbed state on the surface of ultrafine silica. Ph.D. Thesis, Institute of Surface Chemistry of the NAS of Ukraine, 2000

    Google Scholar 

  17. L.A. Belyakova, A.M. Varvarin, O.V. Hora, B.B. Palyanytsya, T.V. Kulik, Thermodestruction of inclusion compounds of “β-cyclodextrin–benzene carboxylic acid”. Russ. J. Mass Spectrom. 6(1), 47–52 (2009)

    Google Scholar 

  18. SDBSWeb: http://riodb01.ibase.aist.go.jp/sdbs/. National Institute of Advanced Industrial Science and Technology (date of access 27.05.2012)

  19. J. Cho, S. Chu, P.J. Dauenhauer, G.W. Huber, Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chem. 14, 428–439 (2012)

    Article  Google Scholar 

  20. B. Hwang, J.R. Obst, Basic studies on the pyrolysis of lignin compounds, in Proceedings of the IAWPS International Conference on Forest Products: Better Utilization of Wood for Human, Earth and Future. The Korean Society of Wood Science and Technology International Association of Wood Products Societies, Daejeon, Korea, vol. 2, pp. 1165–1170, 21–24 April 2003

    Google Scholar 

  21. T.V. Kulik, V.N. Barvinchenko, B.B. Palyanytsya, N.A. Lipkovska, O.O. Dudik, Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation. J. Anal. Appl. Pyrol. 90(2), 219–223 (2011)

    Article  Google Scholar 

  22. T.V. Kulik, N.A. Lipkovska, V.N. Barvinchenko, B.B. Palyanytsya, O.A. Kazakova, O.A. Dovbiy, V.K. Pogorelyi, Interactions between bioactive ferulic acid and fumed silica by UV-VIS spectroscopy, FT-IR, TPD MS investigation and quantum chemical methods. J. Colloid Interface Sci. 339(1), 60–68 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This publication is based on work supported by a grant UKC2-7072-KV-12 from the U.S. Civilian Research and Development Foundation (CRDF Global) with funding from the United States Department of State and by a grant M/299-2013 from the State Agency of Ukraine for Science, Innovation and Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Kulik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Palianytsia, B., Kulik, T., Dudik, O., Cherniavska, T., Tonkha, O. (2014). Study of the Thermal Decomposition of Some Components of Biomass by Desorption Mass Spectrometry. In: Oral, A., Bahsi, Z., Ozer, M. (eds) International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). Springer Proceedings in Physics, vol 155. Springer, Cham. https://doi.org/10.1007/978-3-319-05521-3_3

Download citation

Publish with us

Policies and ethics