Skip to main content

Improvement in the Efficiency of Thin Film CdS/CdTe Solar Cells Using Different TCO Materials

  • Conference paper
  • First Online:
International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 155))

Abstract

CdS/CdTe heterojunction based solar cells have been considered one of the main candidates for terrestrial energy production. This work represents the theoretical results of using ZnO and its alloys as a front contact in CdS/CdTe solar cell as alternative material to expensive and not abundant ITO. The calculation of optical losses is carried out based on the multi-reflections effect and absorption in TCO and CdS layers. Both the front and back surfaces recombination of the CdTe layer are taken into account to describe the recombination losses. It has been found that using the multi-reflections effect leads to increase the ratio of transmitted light reaching the absorber layer. Both the internal and external quantum efficiency are strongly depending on the width of space-charge region. ZnO and its alloys are considered suitable alternative materials to ITO when used as front electrode in CdS/CdTe cells. ZnO:Al has the maximum short-circuit current density of 22.64 mA/cm2 at space-charge width of 0.11 μm and the corresponding optical (reflection and absorption) and recombination (front and back) losses are about 27 %. The efficiency of CdS/CdTe solar cell using ZnO:Al is about 17.9 % at certain parameters of absorber layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Goetzberger, C. Hebling, H. Schock, Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. 40, 1–46 (2003)

    Article  Google Scholar 

  2. T. Surek, Crystal growth and materials research in photovoltaics. J. Cryst. Growth 275, 292–304 (2005)

    Article  ADS  Google Scholar 

  3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 41). Prog. Photovoltaics Res. Appl. 21, 1–11 (2013)

    Article  Google Scholar 

  4. S. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  5. L.A. Kosyachenko, A.I. Savchuk, E.V. Grushko, Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure. Thin Solid Films 517, 2386–2391 (2009)

    Article  ADS  Google Scholar 

  6. H.A. Mohamed, Influence of the optical and recombination losses on the efficiency of CdS/CdTe solar cell at ultrathin absorber layer. Can. J. Phys. (2014)

    Google Scholar 

  7. H.A. Mohamed, Study towards high efficiency CdS/CdTe solar cells. J. Optoelectron. Adv. Mater. (2014)

    Google Scholar 

  8. H.A. Mohamed, Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. J. Appl. Phys. 113(1–6), 093105 (2013)

    Google Scholar 

  9. A.M. Acevedo, Thin film CdS/CdTe solar cells: research perspectives. Sol. Energy 80, 675–681 (2006)

    Article  ADS  Google Scholar 

  10. S.H. Jeong, S.B. Lee, J.-H. Boo, The insert of zinc oxide thin film in indium tin oxide anode for organic electroluminescence devices. Curr. Appl. Phys. 4, 655–658 (2004)

    Article  Google Scholar 

  11. A. Goyal, S. Kachhwaha, ZnO thin films preparation by spray pyrolysis and electrical characterization. Mater. Lett. 68, 354–356 (2012)

    Article  Google Scholar 

  12. K. Kim, S. Kim, S.Y. Lee, Effect of excimer laser annealing on the properties of ZnO thin film prepared by sol-gel method. Curr. Appl. Phys. 12, 585–588 (2012)

    Article  ADS  Google Scholar 

  13. F.W. Mont, J.K. Kim, M.F. Schubert, E.F. Schubert, R.W. Siegel, High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. J. Appl. Phys. 103(1-6), 083120 (2008)

    Google Scholar 

  14. F.W. Mont, J.K. Kim, M.F. Schubert, H. Luo, E.F. Schubert, Encapsulants with an optimized scattering coefficient. In Proceedings of SPIE, ed. by R.W. Siegel, vol. 6486, 64861C (2007)

    Google Scholar 

  15. http://homepages.rpi.edu/schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf (E.F. Fred Schubert, Educational Resources. Refractive index and Extinction Coefficient of Materials, Rensselaer Polytechnic Institute, NY, USA), (2004)

  16. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloy. Compd. 448, 21–26 (2008)

    Article  Google Scholar 

  17. E. Çetinörgü, Characteristics of filtered vacuum arc deposited ZnO–SnO2 thin films on room temperature substrates. Opt. Commun. 280, 114–119 (2007)

    Article  Google Scholar 

  18. Q. Xu, R.D. Hong, H.L. Huang, Z.F. Zhang, M.K. Zhang, X.P. Chen, Z.Y. Wu, Laser annealing effect on optical and electrical properties of Al doped ZnO films. Opt. Laser Technol. 45, 513–517 (2013)

    Article  ADS  Google Scholar 

  19. G.C. Xie, L. Fang, L.P. Peng, G.B. Liu, H.B. Ruan, F. Wu, C.Y. Kong, Effect of In-doping on the optical constants of ZnO thin films. Phys. Procedia 32, 651–657 (2012)

    Article  ADS  Google Scholar 

  20. S. Ninomiya, S. Adachi, Optical properties of wurtzite CdS. J. Appl. Phys. 78(1–11), 1183 (1995)

    Google Scholar 

  21. P.D. Paulson, X. Mathew, Spectroscopic ellipsometry investigation of optical and interface properties of CdTe films deposited on metal foils. Sol. Energ. Mat. Sol. C. 82, 279–290 (2004)

    Article  Google Scholar 

  22. S.O. Kasap, Optoelectronics and Photonics: Principles and Practice (Prentice Hall, New Jersey, 2000), p. 45

    Google Scholar 

  23. V.V. Brus, On quantum efficiency of nonideal solar cells. Sol. Energy 86, 786–791 (2012)

    Article  ADS  Google Scholar 

  24. S.M. Sze, K.N.G. Kwok, Phys. Semicond. Devices (Wiley, New Jersy, 2007)

    Google Scholar 

  25. W.J. Yang, Z.Q. Ma, X. Tang, C.B. Feng, W.G. Zhao, P.P. Shi, Internal quantum efficiency for solar cells. Sol. Energy 82, 106–110 (2008)

    Article  ADS  Google Scholar 

  26. L.A. Kosyachenko, X. Mathew, V.Y. Rshko, E.V. Grushko, Optical absorptivity and recombination losses: the limitations imposed by the thickness of absorber layer in CdS/CdTe solar cells. Sol. Energ. Mat. Sol. C. 114, 179–185 (2013)

    Article  Google Scholar 

  27. L.R. Cruz, W.A. Pinheiro, R.A. Medeiro, C.L. Ferreira, R.G. Dhere, J.N. Duenow, Influence of heat treatment and back contact processing on the performance of CdS/CdTe thin film solar cells produced in a CSS in-line system. Vacuum 87, 45–49 (2013)

    Article  ADS  Google Scholar 

  28. Reference Solar Spectral Irradiance at the Ground at Different Receiving Conditions, Standard of International Organization for Standardization ISO 9845-1 (1992)

    Google Scholar 

  29. C.T. Sah, R. Noyce, W. Shokley, Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc. IRE 45, 1228–1243 (1957)

    Article  Google Scholar 

  30. L.A. Kosyachenko, V.M. Sklyarchuk, O.F. Sklyarchuk, V.A. Gnatyuk, Features of generation-recombination processes in CdTe-based Schottky diodes. Semicond. Sci. Technol. 22, 911–918 (2007)

    Article  ADS  Google Scholar 

  31. T. Toshifumi, S. Adachi, H. Nakanishi, K. Ohtsuka, Optical constants of Zn1-xCdxTe Ternary alloys: experiment and modeling. Jpn. Appl. Phys. 32, 3496–3501 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Deanship of scientific research, King Saud University, Riyadh, Saudi Arabia, for funding and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohamed, H.A., Hadia, N.M.A. (2014). Improvement in the Efficiency of Thin Film CdS/CdTe Solar Cells Using Different TCO Materials. In: Oral, A., Bahsi, Z., Ozer, M. (eds) International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). Springer Proceedings in Physics, vol 155. Springer, Cham. https://doi.org/10.1007/978-3-319-05521-3_14

Download citation

Publish with us

Policies and ethics