Skip to main content

Microcavity and Microchannel Plasmas: General Characteristics and Emerging Applications

  • Chapter
  • First Online:
Complex Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 82))

Abstract

Confining low temperature plasma in cavities or channels having mesoscopic dimensions (1–1000 \(\upmu \)m) has opened a new avenue for plasma science and its applications. This chapter provides a brief overview of the current understanding of microplasma physics, and discusses the distinctives of microcavity plasmas with respect to conventional (macroscopic) plasmas. Notable properties of microcavity plasmas include their peak and time-averaged electron densities as well as power dissipated per unit volume. Applications of arrays of microcavity and microchannel plasmas described here include plasma printing, plasmachemical generation of commercially-valuable products such as ozone, and UHF receiving antennas comprising parallel microchannel plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Tachibana, IEEJ Trans. 1, 145–155 (2006)

    Google Scholar 

  2. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D: Appl. Phys. 39, R55–R70 (2006)

    Article  ADS  Google Scholar 

  3. U. Kogelschatz, Contrib. Plasma Phys. 47, 80–88 (2007)

    Article  ADS  Google Scholar 

  4. F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M.G. Kong, Plasma Process. Polym. 5, 322–344 (2008)

    Article  Google Scholar 

  5. K.H. Becker, K.H. Schoenbach, High Pressure Microdischarges, in Low Temperature Plasmas: Fundamentals, Technologies, and Techniques, 2nd edn., ed. by R. Hippler, H. Kersten, M. Schmidt and K.H. Schoenbach (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  6. J.G. Eden, S.J. Park, Plasma Phys. Control. Fusion 47, B83–B92 (2005)

    Article  Google Scholar 

  7. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, N. Mason, J. Phys. D: Appl. Phys. 45, 253001 (2012)

    Article  ADS  Google Scholar 

  8. S.-J. Park, J. Chen, C.J. Wagner, N.P. Ostrom, C. Liu, J.G. Eden, IEEE J. Select. Topics Quantum Electron. 8, 387–394 (2002)

    Article  Google Scholar 

  9. J.G. Eden, S.-J. Park, J.H. Cho, M.H. Kim, T.J. Houlahan Jr, B. Li, E.S. Kim, T.L. Kim, S.K. Lee, K.S. Kim, J.K. Yoon, S.H. Sung, P. Sun, C.M. Herring, C.J. Wagner, IEEE Trans. Plasma Sci. 41, 661–675 (2013)

    Article  ADS  Google Scholar 

  10. J.P. Boeuf, J. Phys. D: Appl. Phys. 36, R53–R79 (2003)

    Article  ADS  Google Scholar 

  11. S.-J. Park, J.G. Eden, Appl. Phys. Lett. 81, 4127–4129 (2002)

    Article  ADS  Google Scholar 

  12. S.-J. Park, J.G. Eden, J. Chen, C. Liu, Appl. Phys. Lett. 85, 4869–4871 (2004)

    Article  ADS  Google Scholar 

  13. R. Tirumala, D.B. Go, Appl. Phys. Lett. 97, 151502 (2010)

    Article  ADS  Google Scholar 

  14. W.S. Boyle, P. Kisliuk, Phys. Rev. 97, 255–259 (1955)

    Article  ADS  Google Scholar 

  15. M. Kushner, J. Phys. D: Appl. Phys. 95, 846–859 (2004)

    ADS  Google Scholar 

  16. M. Kushner, J. Phys. D: Appl. Phys. 38, 1633–1643 (2005)

    Article  ADS  Google Scholar 

  17. H.-J. Lee, S.-J. Park, J.G. Eden, J. Phys. D: Appl. Phys. 45, 405201 (2012)

    Article  Google Scholar 

  18. J. Dutton, E.M. Williams, Proc. Phys. Soc. 84, 171–175 (1964)

    Article  ADS  Google Scholar 

  19. A.D. White, J. Appl. Phys. 30, 711–719 (1959)

    Article  ADS  Google Scholar 

  20. K.H. Schoenbach, R. Verhappen, T. Tessnow, F.E. Peterkin, W.W. Byszewski, Appl. Phys. Lett. 68, 13–15 (1996)

    Article  ADS  Google Scholar 

  21. K.H. Schoenbach, A. El-Habachi, W. Shi, M. Ciocca, Plasma Sources Sci. Technol. 6, 468–477 (1997)

    Article  ADS  Google Scholar 

  22. J.W. Frame, D.J. Wheeler, T.A. DeTemple, J.G. Eden, Appl. Phys. Lett. 71, 1165–1167 (1997)

    Google Scholar 

  23. U. Kogelschatz, J. Salge, High-Pressure Plasmas: Dielectric Barrier and Corona Discharges Properties and Technical Applications, in Low Temperature Plasmas: Fundamentals, Technologies, and Techniques 2nd edn., ed. by R. Hippler, H. Kersten, M. Schmidt, K. H. Schoenbach (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  24. M. Thomas, J. Borris, A. Dohse, M. Eichler, A. Hinze, K. Lachmann, K. Nagel, C.-P. Klages, Plasma Proc. Polym. 9, 1086–1103 (2012)

    Article  Google Scholar 

  25. S.H. Sung, I.C. Hwang, S.-J. Park, J.G. Eden, Appl. Phys. Lett. 97, 231502 (2010)

    Article  ADS  Google Scholar 

  26. S.-J. Park, T.M. Spinka, J.G. Eden, Appl. Phys. Lett. 89, 031502 (2006)

    Article  ADS  Google Scholar 

  27. K.-F. Chen, N.P. Ostrom, S.-J. Park, J.G. Eden, Appl. Phys. Lett. 88, 061121 (2006)

    Article  ADS  Google Scholar 

  28. K.S. Kim, T.L. Kim, J.K. Yoon, S.-J. Park, J.G. Eden, Appl. Phys. Lett. 94, 011503 (2009)

    Article  ADS  Google Scholar 

  29. K.S. Kim, S.-J. Park, J.G. Eden, J. Phys. D: Appl. Phys. 41, 012004 (2008)

    Article  ADS  Google Scholar 

  30. A. Bass, C. Chevalier, M.W. Blades, J. Anal. Atom. Spectrom. 16, 919–921 (2001)

    Article  Google Scholar 

  31. M. Lu, S.-J. Park, B.T. Cunningham, J.G. Eden, IEEE/ASME J. Microelectromechan. Syst. 16, 1397–1402 (2007)

    Article  Google Scholar 

  32. M. Lu, B.T. Cunningham, S.-J. Park, J.G. Eden, Appl. Phys. Lett. 92, 101928 (2008)

    Article  ADS  Google Scholar 

  33. X. Qiu, R. Gerhard, A. Mellinger, IEEE Trans. Diel. Electr. Insul. 18, 34–42 (2011)

    Article  Google Scholar 

  34. A. Mellinger, O. Mellinger, IEEE Trans. Diel. Electr. Insul. 18, 43–48 (2011)

    Article  Google Scholar 

  35. Y. Yin, J. Messier, J. Hopwood, IEEE Trans. Plasma Sci. 27, 1516–1524 (1999)

    Article  ADS  Google Scholar 

  36. A.M. Bilgic, U. Engel, E. Voges, M. Kuckelheim, J.A.C. Broekaert, Plasma Sources Sci. Technol. 9, 1–4 (2000)

    Article  ADS  Google Scholar 

  37. A.M. Bilgic, E. Voges, E. Engel, J.A.C. Broekaert, J. Anal. Atom. Spectrom. 15, 579–580 (2000)

    Article  Google Scholar 

  38. F. Iza, J.A. Hopwood, IEEE Trans. Plasma Sci. 31, 782–787 (2003)

    Article  ADS  Google Scholar 

  39. F. Iza, J. Hopwood, Plasma Sources Sci. Technol. 14, 397–406 (2005)

    Article  ADS  Google Scholar 

  40. V. Martin, G. Bauville, N. Sadeghi, V. Puech, J. Phys. D: Appl. Phys. 44, 435203 (2011)

    Article  ADS  Google Scholar 

  41. V. Martin, G. Bauville, M. Fleury, V. Puech, Plasma Sources Sci. Technol. 21, 065001 (2012)

    Article  ADS  Google Scholar 

  42. R. Dussart, L.J. Overzet, P. Lefaucheux, T. Dufour, M. Kulsreshath, M.A. Mandra, T. Tillocher, O. Aubry, S. Dozias, P. Ranson, J.B. Lee, M. Goeckner, Eur. Phys. J. D. 60, 601–608 (2010)

    Article  ADS  Google Scholar 

  43. M.K. Kulsreshath, L. Schwaederle, L.J. Overzet, L. Lefaucheux, J. Ladroue, T. Tillocher, O. Aubry, M. Woytasik, G. Schelcher, R. Dussart, J. Phys. D: Appl. Phys. 45, 285202 (2012)

    Article  Google Scholar 

  44. S.A. Al-Bataineh, E.J. Szili, A. Mishra, S.-J. Park, J.G. Eden, H.J. Griesser, N.H. Voelcker, R.D. Short, D.A. Steele, Plasma Process. Polym. 8, 695–700 (2011)

    Article  Google Scholar 

  45. R.M. Sankaran, K.P. Giapis, Appl. Phys. Lett. 79, 593–595 (2001)

    Article  ADS  Google Scholar 

  46. W.-H. Chiang, R.M. Sankaran, Nat. Mater. 8, 882–886 (2009)

    Article  ADS  Google Scholar 

  47. P.A. Lin, R.M. Sankaran, Angew. Chem. Int. Ed. 50, 10953–10956 (2011)

    Article  Google Scholar 

  48. S.W. Lee, D. Liang, X.P. Gao, R.M. Sankaran, Adv. Func. Mater. 21, 2155–2161 (2011)

    Google Scholar 

  49. C. Richmonds, M. Witzke, B. Bartling, S.W. Lee, J. Wainright, C.C. Liu, R.M. Sankaran, J. Am. Chem. Soc. 133, 17582–17585 (2011)

    Article  Google Scholar 

  50. Z. Yang, H. Shirai, T. Kobayashi, Y. Hasegawa, Thin Solid Films 515, 4153–4158 (2007)

    Article  ADS  Google Scholar 

  51. K. Tai, T.J. Houlahan Jr, J.G. Eden, S.J. Dillon, Sci. Rep. 3, 1325 (2013)

    Article  ADS  Google Scholar 

  52. C.J. Wagner, P.A. Tchertchian, J.G. Eden, Appl. Phys. Lett. 97, 134102 (2010)

    Article  ADS  Google Scholar 

  53. P.A. Tchertchian, C.J. Wagner, T.J. Houlahan Jr, B. Li, D.J. Sievers, J.G. Eden, Contrib. Plasma Phys. 51, 889–905 (2011)

    Article  ADS  Google Scholar 

  54. B. Li, T.J. Houlahan Jr, C.J. Wagner, J.G. Eden, Appl. Phys. Lett. 102, 083502 (2013)

    Article  ADS  Google Scholar 

  55. K. Tachibana, Pure Appl. Chem. 82, 1189–1199 (2010)

    Article  Google Scholar 

  56. O. Sakai, K. Tachibana, Plasma Sources Sci. Technol. 21, 013001 (2012)

    Article  ADS  Google Scholar 

  57. E. Yablonovitch, Science 289, 557–559 (2000)

    Article  Google Scholar 

  58. O. Sakai, T. Sakaguichi, K. Tachibana, Appl. Phys. Lett. 87, 241505 (2005)

    Article  ADS  Google Scholar 

  59. O. Sakai, Y. Kishimoto, K. Tachibana, J. Phys. D: Appl. Phys. 38, 431–441 (2005)

    Article  ADS  Google Scholar 

  60. O. Sakai, T. Naito, T. Shimomura, K. Tachibana, Thin Solid Films 518, 3444–3448 (2010)

    Article  ADS  Google Scholar 

  61. K.J. Sankaran, S. Kunuku, S.-C. Lou, J. Kurian, H.-C. Chen, C.-Y. Lee, N.-H. Tai, K.-C. Leou, C. Chen, I.-N. Lin, Nanoscale Res. Lett. 7, 522 (2012)

    Article  ADS  Google Scholar 

  62. S.-J. Park, J.D. Readle, A.J. Price, J.K. Yoon, J.G. Eden, J. Phys. D: Appl. Phys. 40, 3907–3913 (2007)

    Article  ADS  Google Scholar 

  63. J.G. Eden, S.-J. Park, C.M. Herring, J.M. Bulson, J. Phys. D: Appl. Phys. 44, 224011 (2011)

    Article  ADS  Google Scholar 

  64. J. Hettinger, Aerial Conductor for Wireless Signaling and Other Purposes, U.S. Patent No. 1,309,031, 8 July 1919

    Google Scholar 

  65. S. Macheret, S.-J. Park, J.G. Eden (unpublished data)

    Google Scholar 

Download references

Acknowledgments

Discussions with S. Macheret and M. Kushner are greatly appreciated, and many thanks are extended to present and former members of the Laboratory for Optical Physics and Engineering at the University of Illinois. Their tireless efforts are responsible for a significant fraction of the results discussed here. One of us (JGE) also wishes to thank G. Eisenstein and A. Shwartz for their gracious hospitality at the Israel Institute of Technology (Technion) while this chapter was in preparation. The support of the U.S. Air Office of Scientific Research (H.R. Schlossberg) under grants FA9550-10-1-0048 and FA9550-12-1-0487 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gary Eden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eden, J.G., Park, SJ. (2014). Microcavity and Microchannel Plasmas: General Characteristics and Emerging Applications. In: Bonitz, M., Lopez, J., Becker, K., Thomsen, H. (eds) Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-05437-7_11

Download citation

Publish with us

Policies and ethics