Skip to main content

Dynamic Optical Networking

  • Chapter
  • First Online:
Optical Network Design and Planning

Part of the book series: Optical Networks ((OPNW))

Abstract

Transport optical networks today are typically quasi-static, with connections often remaining established for months or years. As an initial transition from this relatively fixed environment, transport optical networks are becoming configurable. The next step in this evolution is dynamic networking, where connections can be rapidly established and torn down without the involvement of operations personnel. After examining the motivation for dynamic optical networking, the remainder of the chapter presents implementation details. This includes an in-depth look at centralized versus distributed control-plane architectures. The challenges of dynamic networking in the presence of optical bypass or in a multi-domain environment are covered as well. In order for networks to be reconfigured remotely through software, the required equipment must already be deployed in the network. Techniques for estimating the amount of equipment to deploy at a node are presented. As a glimpse into possible future directions of optical networking, the implications of Software-Defined Networking relative to a dynamic optical layer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Network virtualization is different from, though related to, the concept of network functions virtualization (NFV). NFV is an initiative to instantiate networking functions as software applications or virtual machines running on commercial off-the-shelf (COTS) servers rather than employing an array of proprietary hardware. NFV is similar to SDN in that it represents a move away from proprietary solutions, and provides carriers and enterprises with greater control of their networks.

  2. 2.

    OpenFlow is a registered trademark of the Open Networking Foundation.

References

  • [ABGL01] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE: Extensions to RSVP for LSP Tunnels. (Internet Engineering Task Force, Request for Comments (RFC) 3209, Dec 2001)

    Google Scholar 

  • [ACMW12] J. Ahmed, C. Cavdar, P. Monti, L. Wosinska, A dynamic bulk provisioning framework for concurrent optimization in PCE-based WDM networks. J. Lightwave Technol. 30(14), 2229–2239, 15 Jul 2012

    Article  Google Scholar 

  • [AgYH10] F. Agraz, Y. Ye, J. Han, RSVP-TE extensions in support of impairment aware routing and wavelength assignment in wavelength switched optical networks (WSONs), draft-agraz-ccamp-wson-impairment-rsvp-00. (Internet Engineering Task Force, Work In Progress, Oct 2010)

    Google Scholar 

  • [ANEJ11] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou, D. Simeonidou, Integrated OpenFlow–GMPLS control plane: An overlay model for software defined packet over optical networks, Proceedings, European Conference on Optical Communication (ECOC’11), Paper Tu.5.K.5, Geneva, Switzerland, 18–22 Sept 2011

    Google Scholar 

  • [Ange12] M. Angelou et al., Benefits of implementing a dynamic impairment-aware optical network: Results of EU project DICONET. IEEE Commun. Mag. 50(8), 79–88, Aug 2012

    Article  Google Scholar 

  • [ATT10] AT&T Optical Mesh Service – OMS. (AT&T Product Brief 1 Jul 2010), www.business.att.com/binary/content/productbrochures/PB_OMS_20676.pdf

  • [AYDA03] C. Assi, Y. Ye, S. Dixit, M. Ali, Control and management protocols for survivable optical mesh networks. J.Lightwave Technol. 21(11), 2638–2651, Nov 2003

    Article  Google Scholar 

  • [AYTM09] D. Andrei, H.-H. Yen, M. Tornatore, C. U. Martel, B. Mukherjee, Integrated provisioning of sliding scheduled services over WDM optical networks. J. Opt. Commun. Netw. 1(2), A94–A105, Jul 2009

    Article  Google Scholar 

  • [Azod11] S. Azodolmolky et al., Experimental demonstration of an impairment aware network planning and operation tool for transparent/translucent optical networks. J. Lightwave Technol. 29(4), 439–448, 15 Feb 2011

    Article  Google Scholar 

  • [BaLe02] N. Barakat, A. Leon-Garcia, An analytic model for predicting the locations and frequencies of 3R regenerations in all-optical wavelength-routed WDM networks. Proceedings, IEEE International Conference on Communications (ICC’02), New York, 28 Apr–2 May 2002. vol. 5, pp. 2812–2816

    Google Scholar 

  • [Batt07] L. Battestilli et al., EnLIGHTened computing: An architecture for co-allocating network, compute, and other grid resources for high-end applications, International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET 2007), Dubai, United Arab Emirates, 18–20 Nov 2007, pp. 1–8

    Google Scholar 

  • [Berg03] L. Berger, Editor, Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description. (Internet Engineering Task Force, Request for Comments (RFC) 3471, Jan 2003)

    Google Scholar 

  • [BGPV12] L. Badger, T. Grance, R. Patt-Corner, J. Voas, Cloud Computing Synopsis and Recommendations. (National Institute of Standards and Technology (NIST), Special Publication 800–146, May 2012)

    Google Scholar 

  • [BJJL11] I. Baldine, A. W. Jackson, J. Jacob, W. E. Leland, J. H. Lowry, W. C. Milliken, P. P. Pal, S. Ramanathan, K. Rauschenbach, C. A. Santivanez, D. M. Wood, PHAROS: An architecture for next-generation core optical networks, in Next-Generation Internet: Architectures and Protocols, ed. by B. Ramamurthy, G. N. Rouskas, K. M. Sivalingam, (Cambridge University Press, 2011), pp. 154–178

    Google Scholar 

  • [BoSt04] C. Bouras, K. Stamos, An adaptive admission control algorithm for bandwidth brokers. Proceedings, Third IEEE International Symposium on Network Computing and ­Applications (NCA 2004), Cambridge, MA, 30 Aug–1 Sep 2004

    Google Scholar 

  • [BrVF09] R. Bradford, J. P. Vasseur, A. Farrel, Preserving topology confidentiality in inter-­domain path computation using a path-key-based mechanism. (Internet Engineering Task Force, Request for Comments (RFC) 5520, Apr 2009)

    Google Scholar 

  • [BSBS08] J. Berthold, A. A. M. Saleh, L. Blair, J. M. Simmons, Optical networking: Past, present, and future. J. Lightwave Technol. 26(9), 1104–1118, 1 May 2008

    Article  Google Scholar 

  • [CCCD12] A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike, M. Feuer, J. W. Gannett, J. ­Jackel, G. T. Kim, J. G. Klincewicz, T. J. Kwon, G. Li, P. Magill, J. M. Simmons, R. A. Skoog, J. Strand, A. Von Lehmen, B. J. Wilson, S. L. Woodward, D. Xu, Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks. J. Opt. Commun. Netw. 4(1), 1–14, Jan 2012

    Article  Google Scholar 

  • [ChVo12] N. Charbonneau, V. M. Vokkarane, A survey of advance reservation routing and wavelength assignment in wavelength-routed WDM networks. IEEE Commun. Surv. Tutor. 14(4), 1037–1064, Fourth Quarter, 2012

    Article  Google Scholar 

  • [CSAG08] F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, J. Poirrier, Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks. J. Lightwave Technol. 26(19), 3318–3328, 1 Oct 2008

    Article  Google Scholar 

  • [DaPM12] S. Das, G. Parulkar, N. McKeown, Why OpenFlow/SDN can succeed where GMPLS failed. Proceedings, European Conference on Optical Communication (ECOC’12), Paper Tu.1.D.1, Amsterdam, The Netherlands, 16–20 Sep 2012

    Google Scholar 

  • [DDMN03] T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, B. St. Arnaud, Translight: A global-scale lambdagrid for e-science. Commun. ACM, 46(11), 34–41, Nov 2003

    Article  Google Scholar 

  • [DeMi13] I. de Miguel, et al., Cognitive dynamic optical networks. J. Opt. Commun. Netw. 5(10), A107–A118, Oct 2013

    Article  Google Scholar 

  • [ESCJ08] E. Escalona, S. Spadaro, J. Comellas, G. Junyent, Advance reservations for service-aware GMPLS-based optical networks. Computer Netw. 52(10), 1938–1950, Jul 2008

    Article  Google Scholar 

  • [FaVA06] A. Farrel, J.-P. Vasseur, J. Ash, A Path Computation Element (PCE)-Based Architecture. (Internet Engineering Task Force, Request for Comments (RFC) 4655, Aug 2006)

    Google Scholar 

  • [GDSP10] V. Gudla, S. Das, A. Shastri, G. Parulkar, N. McKeown, L. Kazovsky, S. ­Yamashita, Experimental demonstration of OpenFlow control of packet and circuit switches. Proceedings, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’10), Paper OTuG2, San Diego, CA, 21–25 Mar 2010

    Google Scholar 

  • [GeRa04] O. Gerstel, H. Raza, Predeployment of resources in agile photonic networks. J.Lightwave Technol. 22(10), 2236–2244, Oct 2004

    Article  Google Scholar 

  • [GrBX13] S. Gringeri, N. Bitar, T. J. Xia, Extending Software Defined Network principles to include optical transport. IEEE Commun. Mag. 51(3), 32–40, Mar 2013

    Article  Google Scholar 

  • [GrSW99] A. G. Greenberg, R. Srikant, W. Whitt, Resource sharing for book-ahead and instantaneous-request calls. IEEE/ACM Trans. Netw. 7(1), 10–22, Feb 1999

    Article  Google Scholar 

  • [GSCA09] A. Giorgetti, N. Sambo, I. Cerutti, N. Andriolli, P. Castoldi, Label ­preference schemes for lightpath provisioning and restoration in distributed GMPLS networks. J. ­Lightwave ­Technol. 27(6), 688–697, 15 Mar 2009

    Article  Google Scholar 

  • [JADD13] T. Jiménez, J. C. Aguado, I. de Miguel, R. J. Durán, M. Angelou, N. Merayo, P. ­Fernández, R. M. Lorenzo, I. Tomkos, E. J. Abril, A cognitive quality of transmission estimator for core optical networks. J. Lightwave Technol. 31(6), 942–951, 15 Mar 2013

    Article  Google Scholar 

  • [KaKY03] D. Katz, K. Kompella, D. Yeung, Traffic Engineering (TE) Extensions to OSPF Version 2. (Internet Engineering Task Force, Request for Comments (RFC) 3630, Sep 2003)

    Google Scholar 

  • [KiFa11] D. King, A. Farrel, The application of the Path Computation Element architecture to the determination of a sequence of domains in MPLS and GMPLS, draft-king-pce-hierarchy-fwk-06. (Internet Engineering Task Force, Work In Progress, Apr 2011)

    Google Scholar 

  • [KPGD03] J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, R. Douville, Routing and wavelength assignment of scheduled lightpath demands. IEEE J. Sel. Areas Commun. 21(8), 1231–1240, Oct 2003

    Article  Google Scholar 

  • [LBLM12] Y. Lee, G. Bernstein, D. Li, G. Martinelli, A Framework for the Control of Wavelength Switched Optical Networks (WSONs) with Impairments, (Internet Engineering Task Force, Request for Comments (RFC) 6566, Mar 2012)

    Google Scholar 

  • [LBMT13] Y. Lee, G. Bernstein, J. Martensson, T. Takeda, T. Tsuritani, O. G. de Dios, PCEP requirements for WSON routing and wavelength assignment, draft-ietf-pce-wson-routing-wavelength-09. (Internet Engineering Task Force, Work In Progress, June 2013)

    Google Scholar 

  • [LeBI11] Y. Lee, G. Bernstein, W. Imajuku, Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs). (Internet Engineering Task Force, Request for Comments (RFC) 6163, Apr 2011)

    Google Scholar 

  • [LiCh07] S. Liu, L. Chen, Deployment of carrier-grade bandwidth-on-demand services over optical transport networks: A Verizon experience. Proceedings, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’07), Paper NThC3,Anaheim, CA, 25–29 Mar 2007

    Google Scholar 

  • [LiTM12] L. Liu, T. Tsuritani, I. Morita, Experimental demonstration of OpenFlow/GMPLS interworking control plane for IP/DWDM multi-layer optical networks. Proceedings, International Conference on Transparent Optical Networks (ICTON’12), Paper Tu.A2.5, United Kingdom, 2–5 Jul 2012

    Google Scholar 

  • [Liu13] L. Liu, et al., Field trial of an OpenFlow-based unified control plane for multilayer multigranularity optical switching networks. J. Lightwave Technol. 31(4), 506–514, 15 Feb 2013

    Article  Google Scholar 

  • [LiWM07] W. Lin, R. S. Wolff, B. Mumey, A Markov-based reservation algorithm for wavelength assignment in all-optical networks. J. Lightwave Technol. 25(7), 1676–1683, Jul 2007

    Article  Google Scholar 

  • [MABP08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling innovation in campus networks. White Paper, ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74, Apr 2008

    Article  Google Scholar 

  • [Mann04] E. Mannie, Editor, Generalized Multi-Protocol Label Switching (GMPLS) Architecture. (Internet Engineering Task Force, Request for Comments (RFC) 3945, Oct 2004)

    Google Scholar 

  • [MaZa10] G. Martinelli, A. Zanardi, GMPLS signaling extensions for optical impairment aware lightpath setup, draft-martinelli-ccamp-optical-imp-signaling-03. (Internet Engineering Task Force, Work In Progress, Oct 2010)

    Google Scholar 

  • [MCMT10] R. Martínez, R. Casellas, R. Muñoz, T. Tsuritani, Experimental translucent-­oriented routing for dynamic lightpath provisioning in GMPLS-enabled wavelength switched optical networks. J. Lightwave Technol. 28(8), 1241–1255, 15 Apr 2010

    Article  Google Scholar 

  • [MoBB04] A. Mokhtar, L. Benmohamed, M. Bortz, OXC port dimensioning strategies in optical networks – a nodal perspective. IEEE Commun. Lett. 8(5), 283–285, May 2004

    Article  Google Scholar 

  • [MPCA06] R. Martínez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. ­Wosinska, J. Comellas, G. Junyent, Challenges and requirements for introducing impairment-­awareness into the management and control planes of ASON/GMPLS WDM networks. IEEE Commun. Mag. 44(12), 76–85, Dec 2006

    Article  Google Scholar 

  • [ONF12] Open Networking Foundation, “Software-Defined Networking: The new norm for networks,” ONF White Paper, 13 Apr 2012

    Google Scholar 

  • [OzPJ03] T. Ozugur, M.-A. Park, J. P. Jue, Label prioritization in GMPLS-centric all-optical networks. Proceedings, IEEE International Conference on Communications (ICC’03), Anchorage, AK, 11–15 May 2003, vol. 2, pp. 1283–1287

    Google Scholar 

  • [PCGS13] F. Paolucci, F. Cugini, A. Giorgetti, N. Sambo, P. Castoldi, A survey on the path computation element (PCE) architecture. IEEE Commun. Surv. Tutor. 15(4), 1819–1841, Fourth Quarter, 2013

    Article  Google Scholar 

  • [PSAA12] J. Perelló, S. Spadaro, F. Agraz, M. Angelou, S. Azodolmolky, Y. Qin, R. Nejabati, D. Simeonidou, P. Kokkinos, E. Varvarigos, I. Tomkos, Experimental demonstration of a GMPLS-enabled impairment-aware lightpath restoration scheme. J. Opt. Commun. Netw. 4(5), 344–355, May 2012

    Article  Google Scholar 

  • [Sale06] A. A. M. Saleh, Program Manager, “Dynamic Multi-Terabit Core Optical Networks: Architecture, Protocols, Control And Management (CORONET),” Defense Advanced Research Projects Agency (DARPA) Strategic Technology Office (STO), BAA 06–29, Proposer Information Pamphlet (PIP), Aug 2006

    Google Scholar 

  • [Sale07] A. A. M. Saleh, Technologies, architecture and services for the next-generation core optical networks. Proceedings, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’07), Workshop on the Future of Optical Networking, Anaheim, CA, 25–29 Mar 2007

    Google Scholar 

  • [SaSi06] A. A. M. Saleh, J. M. Simmons, Evolution toward the next-generation core optical network. J. Lightwave Technol. 24(9), 3303–3321, Sept 2006

    Article  Google Scholar 

  • [SaSi11] A. A. M. Saleh, J. M. Simmons, Technology and architecture to enable the explosive growth of the Internet. IEEE Commun. Mag. 49(1), 126–132, Jan 2011

    Google Scholar 

  • [SCGN12] R. Skoog, G. Clapp, J. Gannett, A. Neidhardt, A. Von Lehman, B. Wilson, Architectures, protocols and design for highly dynamic optical networks. Opt. Switch. Netw. 9(3), 240–251, Jul 2012

    Google Scholar 

  • [SFPF05] L. Smarr, J. Ford, P. Papadopoulos, S. Fainman, T. DeFanti, M. Brown, J. Leigh, The OptIPuter, Quartzite, and Starlight Projects: A campus to global-scale testbed for optical technologies enabling LambdaGrid computing. Proceedings, Optical Fiber Communication (OFC’05), Paper OWG7, Anaheim, CA, 6–11 Mar 2005

    Google Scholar 

  • [SGCA09] N. Sambo, A. Giorgetti, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, Accounting for shared regenerators in GMPLS-controlled translucent optical networks. J. ­Lightwave Technol. 27(19), 4338–4347, 1 Oct 2009

    Google Scholar 

  • [ShFa11] K. Shiomoto, A. Farrel, Advice on When it is Safe to Start Sending Data on Label Switched Paths Established Using RSVP-TE. (Internet Engineering Task Force, Request for Comments (RFC) 6383, Sep 2011)

    Google Scholar 

  • [SiSB01] J. M. Simmons, A. A. M. Saleh, L. Benmohamed, Extending Generalized Multi-Protocol Label Switching to configurable all-optical networks. Proceedings, National Fiber Optic Engineers Conference (NFOEC’01), Baltimore, MD, 8–12 Jul 2001, pp. 14–23

    Google Scholar 

  • [SkNe09] R. A. Skoog, A. L. Neidhardt, A fast, robust signaling protocol for enabling highly dynamic optical networks. Proceedings, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’09), Paper NTuB5, San Diego, CA, 22–26 Mar 2009

    Google Scholar 

  • [SkWi10] R. A. Skoog, B. J. Wilson, Transponder pool sizing in highly dynamic translucent WDM optical networks. Proceedings, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’10), Paper NTuA3, San Diego, CA, 21–25 Mar 2010

    Google Scholar 

  • [SPLC09] N. Sambo, C. Pinart, E. Le Rouzic, F. Cugini, L. Valcarenghi, P. Castoldi, Signaling and multi-layer probe-based schemes for guaranteeing QoT in GMPLS transparent networks. Proceedings, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’09), Paper OWI5, San Diego, CA, 22–26 Mar 2009

    Google Scholar 

  • [SYTR07] L. Shen, X. Yang, A. Todimala, B. Ramamurthy, A two-phase approach for ­dynamic lightpath scheduling in WDM optical networks. Proceedings, IEEE International Conference on Communications (ICC’07), Glasgow, Scotland, 24–28 Jun 2007, pp. 2412–2417

    Google Scholar 

  • [Take06] A. Takefusa, et al., G-lambda: Coordination of a grid scheduler and lambda path service over GMPLS. Futur. Gener. Comp. Sy. 22(8), 868–875, Oct 2006

    Google Scholar 

  • [TrCV13] J. Triay, C. Cervello-Pastor, V. M. Vokkarane, Analytical blocking probability model for hybrid immediate and advance reservations in optical WDM networks. IEEE/ACM Trans. Netw. 21(6), 1890–1903, Dec 2013

    Google Scholar 

  • [VaLe09] J. P. Vasseur, J. L. Le Roux, Path Computation Element (PCE) Communication ­Protocol (PCEP). (Internet Engineering Task Force, Request for Comments (RFC) 5440, Mar 2009)

    Google Scholar 

  • [VaMa12] J. Varia, S. Mathew, “Overview of Amazon Web Services,” White Paper, Oct 2012

    Google Scholar 

  • [VZBL09] J. P. Vasseur, R. Zhang, N. Bitar, J. L. Le Roux, A Backward-Recursive PCE-Based Computation (BRPC) Procedure To Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths. (Internet Engineering Task Force, Request for Comments (RFC) 5441, Apr 2009)

    Google Scholar 

  • [WFKP12] S. L. Woodward, M. D. Feuer, I. Kim, P. Palacharla, X. Wang, D. Bihon, Service velocity: Rapid provisioning strategies in optical ROADM networks. J. Opt. Commun. Netw. 4(2), 92–98, Feb 2012

    Google Scholar 

  • [WLLF05] B. Wang, T. Li, X. Luo, Y. Fan, C. Xin, On service provisioning under a scheduled traffic model in reconfigurable WDM optical networks. Proceedings, IEEE 2nd International Conference on Broadband Networks (BroadNets 2005), vol. 1, Boston, MA, 3–7 Oct 2005, pp. 13–22

    Google Scholar 

  • [YeTG13] S. H. Yeganeh, A. Tootoonchian, Y. Ganjali, On scalability of Software-Defined Networking. IEEE Commun. Mag. 51(2), 136–141, Feb 2013

    Google Scholar 

  • [YuMG99] X. Yuan, R. Melhem, R. Gupta, Distributed path reservation algorithms for multiplexed all-optical interconnection networks. IEEE Trans. Comput. 48(12), 1–9, Dec 1999

    Google Scholar 

  • [ZENS08] G. Zervas, E. Escalona, R. Nejabati, D. Simeonidou, G. Carrozzo, N. Ciulli, B. ­Belter, A. Binczewski, M. Poznan, A. Tzanakaki, G. Markidis. PHOSPHORUS grid-enabled ­GMPLS control plane (G 2 MPLS): Architectures, services, and interfaces. IEEE Commun. Mag. 46(6),128–137, Jun 2008

    Google Scholar 

  • [ZhMo02] J. Zheng, H. T. Mouftah, Routing and wavelength assignment for advance reservation in wavelength-routed WDM optical networks. Proceedings, IEEE International Conference on Communications (ICC’02), vol. 5, New York, NY, 28 Apr–2 May 2002, pp. 2722–2726

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. Simmons .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simmons, J. (2014). Dynamic Optical Networking. In: Optical Network Design and Planning. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-05227-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05227-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05226-7

  • Online ISBN: 978-3-319-05227-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics