Skip to main content

Systems Biology Approaches in the Design of Effective miRNA-Targeted Therapeutics

  • Chapter
  • First Online:
MicroRNA Targeted Cancer Therapy
  • 1185 Accesses

Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that are recognized to epigenetically modulate gene expression by weakly binding to the 3′UTR and/or other sites of target mRNAs. A number of miRNAs have been recognized to be aberrantly expressed in cancer. These findings have led researchers to aggressively pursue miRNAs for cancer diagnostic and therapeutics. However, both identification and targeting of miRNAs is not very straight forward because each miRNA can modulate scores of different genes which in-turn can influence exponential number of different targets. In recent years, there has been a consensus that the complexity of miRNAs requires holistic systems biology approaches to tease out the specific targets of each miRNA, which appears to be context dependent. In this chapter we present the recent advancements in systems and network biology and how these and related technologies are aiding in the design of effective miRNA-based therapeutics against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  2. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  3. Lai EC (2002) Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  5. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27:459–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  7. Jackson AL, Levin AA (2012) Developing microRNA therapeutics: approaching the unique complexities. Nucleic Acid Ther 22:213–225

    CAS  PubMed  Google Scholar 

  8. Das N (2012) MicroRNA Targets - How to predict? Bioinformation 8:841–845

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3’UTRs. PLoS One 6:e18067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  PubMed  Google Scholar 

  11. Azmi AS (2013) Systems and Network Biology in Pharmaceutical Drug Discovery. Curr Pharm Des 31:1592–1605

    Google Scholar 

  12. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yoon S, De MG (2006) Computational identification of microRNAs and their targets. Birth Defect Res C Embryo Today 78:118–128

    Article  CAS  Google Scholar 

  14. Guruceaga E, Segura V (2014) Functional interpretation of microRNA-mRNA association in biological systems using R. Comput Biol Med 44:124–131

    Article  CAS  PubMed  Google Scholar 

  15. Gusev Y (2008) Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods 44:61–72

    Article  CAS  PubMed  Google Scholar 

  16. Hong L, Yang Z, Ma J, Fan D (2013) Function of miRNA in controlling drug resistance of human cancers. Curr Drug Targets 14:1118–1127

    Article  CAS  PubMed  Google Scholar 

  17. Ragusa M, Statello L, Maugeri M, Majorana A, Barbagallo D et al (2012) Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors. J Mol Med (Berl) 90:1421–1438

    Article  CAS  Google Scholar 

  18. Vera J, Schmitz U, Lai X, Engelmann D, Khan FM et al (2013) Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res 73:3511–3524

    Article  CAS  PubMed  Google Scholar 

  19. Uboldi S, Calura E, Beltrame L, Fuso Nerini I, Marchini S et al (2012) A systems biology approach to characterize the regulatory networks leading to trabectedin resistance in an in vitro model of myxoid liposarcoma. PLoS One 7:e35423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH (2010) Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res 3:28–47

    PubMed Central  PubMed  Google Scholar 

  21. Ali S, Banerjee S, Logna F, Bao B, Philip PA et al (2012) Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol 227:3373–3380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ali S, Saleh H, Sethi S, Sarkar FH, Philip PA (2012) MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer 107:1354–1360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  CAS  PubMed  Google Scholar 

  24. Holohan C, Van SS, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  25. Azmi AS, Sarkar FH (2012) Prostate cancer stem cells: molecular characterization for targeted therapy. Asian J Androl 14:659–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. Chapter 14: Unit. doi:10.1002/0471141755.ph1425s61

    Google Scholar 

  27. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  CAS  PubMed  Google Scholar 

  28. Bao B, Azmi AS, Li Y, Ahmad A, Ali S et al (2014) Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 9:22–35

    Google Scholar 

  29. Bao B, Li Y, Ahmad A, Azmi AS, Bao G et al (2012) Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 13:1858–1868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramzi M. Mohammad or Asfar S. Azmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohammad, R.M., Bao, B., Sarkar, F.H., Philip, P.A., Azmi, A.S. (2014). Systems Biology Approaches in the Design of Effective miRNA-Targeted Therapeutics. In: Sarkar, F. (eds) MicroRNA Targeted Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-05134-5_18

Download citation

Publish with us

Policies and ethics