Skip to main content

Quantum Monte Carlo Techniques and Applications for Warm Dense Matter

  • Conference paper
  • First Online:
Frontiers and Challenges in Warm Dense Matter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 96))

Abstract

The Quantum Monte Carlo (QMC) method is used to study physical problems which are analytically intractable due to many-body interactions and strong coupling strengths. This makes QMC a natural choice in the warm dense matter (WDM) regime where both the Coulomb coupling parameter \(\varGamma \equiv {e}^{2}/(r_{s}k_{B}T)\) and the electron degeneracy parameter ΘTT F are close to unity. As a truly first-principles simulation method, it affords superior accuracy while still maintaining reasonable scaling, emphasizing its role as a benchmark tool.Here we give an overview of QMC methods including diffusion MC, path integral MC, and coupled electron-ion MC. We then provide several examples of their use in the WDM regime, reviewing applications to the electron gas, hydrogen plasma, and first row elements. We conclude with a comparison of QMC to other existing methods, touching specifically on QMC’s range of applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 1.4 for more details on wave functions and optimization methods.

  2. 2.

    Note that this assumes real wave functions. If otherwise, the fixed-phase approximation may be used [4].

  3. 3.

    Note, for non-diagonal elements the sum over odd permutations must be retained.

  4. 4.

    All exact methods that work with finite systems share this difficulty.

  5. 5.

    All data can be found in a repository hosted at http://github.com/3dheg/3DHEG

  6. 6.

    Note that both theories are compatible with experiments because of the large uncertainty of the latter.

References

  1. C. Pierleoni, D.M. Ceperley, Lect. Notes Phys. 714, 641 (2006)

    Article  Google Scholar 

  2. M.A. Morales, C. Pierleoni, D.M. Ceperley, Phys. Rev. E 81, 021202 (2010)

    Article  Google Scholar 

  3. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  Google Scholar 

  4. J. Kolorenč, L. Mitas, Rep. Prog. Phys. 74(2), 026502 (2011)

    Article  Google Scholar 

  5. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  Google Scholar 

  6. D.M. Ceperley, J. Stat. Phys. 63, 1237 (1991). doi:10.1007/BF01030009

    Article  Google Scholar 

  7. D.M. Ceperley, Path integral Monte Carlo methods for fermions, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, ed. by K. Binder, G. Ciccotti (Editrice Compositori, Bologna/Italy, 1996)

    Google Scholar 

  8. V. Natoli, D.M. Ceperley, J. Comput. Phys. 117(1), 171 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Chiesa, D.M. Ceperley, R.M. Martin, M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006)

    Article  Google Scholar 

  10. J. McMahon, M. Morales, C. Pierleoni, D.M. Ceperley, Rev. Mod. Phys. 84, 1607 (2012)

    Article  Google Scholar 

  11. D.M. Ceperley, M. Dewing, J. Chem. Phys. 110, 9812 (1999)

    Article  Google Scholar 

  12. D. Ceperley, M. Dewing, C. Pierleoni, Lect. Notes Phys. 605, 473 (2002)

    Article  MathSciNet  Google Scholar 

  13. M. Holzmann, D.M. Ceperley, C. Pierleoni, K. Esler, Phys. Rev. E 68(046707), 1 (2003)

    Google Scholar 

  14. C. Pierleoni, K. Delaney, M. Morales, D. Ceperley, M. Holzmann, Comput. Phys. Commun. 179(1–3), 89 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Baroni, S. Moroni, Phys. Rev. Lett. 82(24), 4745 (1999)

    Article  Google Scholar 

  16. M. Bajdich, L. Mitas, G. Drobný, L.K. Wagner, K.E. Schmidt, Phys. Rev. Lett. 96, 130201 (2006)

    Article  Google Scholar 

  17. A.G. Anderson, W.A. Goddard, J. Chem. Phys. 132(16), 164110 (2010)

    Article  Google Scholar 

  18. M. Casula, C. Attaccalite, S. Sorella, J. Chem. Phys. 121(15), 7110 (2004)

    Article  Google Scholar 

  19. Y. Kwon, D.M. Ceperley, R.M. Martin, Phys. Rev. B 58, 6800 (1998)

    Article  Google Scholar 

  20. M. Bajdich, M.L. Tiago, R.Q. Hood, P.R.C. Kent, F.A. Reboredo, Phys. Rev. Lett. 104, 193001 (2010)

    Article  Google Scholar 

  21. P. Seth, P.L. Rios, R.J. Needs, J. Chem. Phys. 134(8), 084105 (2011)

    Article  Google Scholar 

  22. B.K. Clark, M.A. Morales, J. McMinis, J. Kim, G.E. Scuseria, J. Chem. Phys. 135(24), 244105 (2011)

    Article  Google Scholar 

  23. M.A. Morales, J. McMinis, B.K. Clark, J. Kim, G.E. Scuseria, J. Chem. Theory Comput. 8(7), 2181 (2012)

    Article  Google Scholar 

  24. C.J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, R.G. Hennig, Phys. Rev. Lett. 98, 110201 (2007)

    Article  Google Scholar 

  25. J. Toulouse, C.J. Umrigar, J. Chem. Phys. 128(17), 174101 (2008)

    Article  Google Scholar 

  26. J. Toulouse, C.J. Umrigar, J. Chem. Phys. 126(8), 084102 (2007)

    Article  Google Scholar 

  27. S.A. Khairallah, J. Shumway, E.W. Draeger, ArXiv e-prints (2011)

    Google Scholar 

  28. B. Militzer, E.L. Pollock, Phys. Rev. E 61, 3470 (2000)

    Article  Google Scholar 

  29. D.M. Ceperley, B.J. Alder, Phys. Rev. B 36, 2092 (1987)

    Article  Google Scholar 

  30. C. Lin, F.H. Zong, D.M. Ceperley, Phys. Rev. E 64, 016702 (2001)

    Article  Google Scholar 

  31. S. Chiesa, D.M. Ceperley, R.M. Martin, M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006)

    Article  Google Scholar 

  32. N.D. Drummond, R.J. Needs, A. Sorouri, W.M.C. Foulkes, Phys. Rev. B (Condens. Matter Mater. Phys.) 78(12), 125106 (2008)

    Google Scholar 

  33. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  Google Scholar 

  34. F. Bloch, Z. Phys. 57, 545 (1929)

    Article  MATH  Google Scholar 

  35. F.H. Zong, C. Lin, D.M. Ceperley, Phys. Rev. E 66, 036703 (2002)

    Article  Google Scholar 

  36. D. Ceperley, Phys. Rev. B 18, 3126 (1978)

    Article  Google Scholar 

  37. S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008)

    Article  Google Scholar 

  38. E.L. Pollock, J.P. Hansen, Phys. Rev. A 8, 3110 (1973)

    Article  Google Scholar 

  39. B. Jancovici, Phys. A Stat. Mech. Appl. 91, 152 (1978)

    Article  Google Scholar 

  40. J.P. Hansen, P. Vieillefosse, Phys. Lett. A 53, 187 (1975)

    Article  Google Scholar 

  41. M.D. Jones, D.M. Ceperley, Phys. Rev. Lett. 76, 4572 (1996)

    Article  Google Scholar 

  42. E.W. Brown, B.K. Clark, J.L. DuBois, D.M. Ceperley, Phys. Rev. Lett. 110, 146405 (2013)

    Article  Google Scholar 

  43. D.M. Ceperley, Phys. Rev. Lett. 69, 331 (1992)

    Article  Google Scholar 

  44. J.P. Hansen, Phys. Rev. A 8, 3096 (1973)

    Article  Google Scholar 

  45. K.S. Singwi, M.P. Tosi, R.H. Land, A. Sjölander, Phys. Rev. 176, 589 (1968)

    Article  Google Scholar 

  46. S. Tanaka, S. Ichimaru, J. Phys. Soc. Jpn. 55, 2278 (1986)

    Article  Google Scholar 

  47. R.G. Dandrea, N.W. Ashcroft, A.E. Carlsson, Phys. Rev. B 34, 2097 (1986)

    Article  Google Scholar 

  48. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. B 62, 16536 (2000)

    Article  Google Scholar 

  49. M.W.C. Dharma-wardana, F. Perrot, Phys. Rev. Lett. 84, 959 (2000)

    Article  Google Scholar 

  50. S. Dutta, J. Dufty, Phys. Rev. E 87, 032102 (2013)

    Article  Google Scholar 

  51. E.W. Brown, J.L. DuBois, M. Holzmann, D.M. Ceperley, Phys. Rev. B 88, 081102 (2013)

    Article  Google Scholar 

  52. V. Natoli, R.M. Martin, D.M. Ceperley, Phys. Rev. Lett. 70, 1952 (1993)

    Article  Google Scholar 

  53. V. Natoli, R.M. Martin, D.M. Ceperley, Phys. Rev. Lett. 74, 1601 (1995)

    Article  Google Scholar 

  54. C. Pierleoni, D. Ceperley, B. Bernu, W. Magro, Phys. Rev. Lett. 73(16), 2145 (1994)

    Article  Google Scholar 

  55. W. Magro, D. Ceperley, C. Pierleoni, B. Bernu, Phys. Rev. Lett. 76(8), 1240 (1996)

    Article  Google Scholar 

  56. C. Pierleoni, W.R. Magro, D. Ceperley, B. Bernu, in Physics of Strongly Coupled Plasmas, Binz/Rügen, ed. by W.D. Kraeft, M. Schlanges (World Scientific, 1996), pp. 11–26

    Google Scholar 

  57. B. Militzer, D. Ceperley, Phys. Rev. Lett. 85(9), 1890 (2000)

    Article  Google Scholar 

  58. B. Militzer, D. Ceperley, J. Kress, J. Johnson, L. Collins, S. Mazevet, Phys. Rev. Lett. 87(27), 275502 (2001)

    Article  Google Scholar 

  59. L. DaSilva, P. Celliers, G. Collins, K. Budil, N. Holmes, T. Barbie Jr., B. Hammel, J. Kilkenny, R. Wallace, M. Ross, R. Cauble, Phys. Rev. Lett. 78(3), 483 (1997)

    Article  Google Scholar 

  60. G. Collins, L.D. Silva, P. Celliers, D. Gold, M. Foord, R. Wallace, A. Ng, S. Weber, K. Budil, R. Cauble, Science 281(5380), 1178 (1998)

    Article  Google Scholar 

  61. P. Celliers, G. Collins, L.D. Silva, D. Gold, R. Cauble, R. Wallace, M. Foord, B. Hammel, Phys. Rev. Lett. 84(24), 5564 (2000)

    Article  Google Scholar 

  62. M. Knudson, D. Hanson, J. Bailey, C. Hall, J. Asay, W. Anderson, Phys. Rev. Lett. 87(22), 225501 (2001)

    Article  Google Scholar 

  63. M. Knudson, D. Hanson, J. Bailey, C. Hall, J. Asay, Phys. Rev. Lett. 90(3), 35505 (2003)

    Article  Google Scholar 

  64. M. Knudson, D. Hanson, J. Bailey, C. Hall, J. Asay, C. Deeney, Phys. Rev. B 69(14), 144209 (2004)

    Article  Google Scholar 

  65. J. Bailey, M. Knudson, A. Carlson, G. Dunham, M. Desjarlais, D. Hanson, J. Asay, Phys. Rev. B 78(14), 144107 (2008)

    Article  Google Scholar 

  66. D. Hicks, T. Boegly, P. Celliers, J. Eggert, S. Moon, D. Meyerhofer, G. Collins, Phys. Rev. B 79, 014112 (2009)

    Article  Google Scholar 

  67. M. Knudson, M. Desjarlais, Phys. Rev. Lett. 103(22), 225501 (2009)

    Article  Google Scholar 

  68. G. Boriskov, A. Bykov, R. Il’Kaev, V. Selemir, G. Simakov, R. Trunin, V. Urlin, A. Shuikin, W. Nellis, Phys. Rev. B 71(9), 092104 (2005)

    Google Scholar 

  69. S. Grishechkin, S. Gruzdev, V. Gryaznov, M. Zhernokletov, R. Il’Kaev, I. Iosilevskii, G. Kashintseva, S. Kirshanov, S. Manachkin, V. Mintsev, JETP Lett. 80(6), 398 (2004)

    Google Scholar 

  70. C. Pierleoni, D.M. Ceperley, M. Holzmann, Phys. Rev. Lett. 93, 146402 (2004)

    Article  Google Scholar 

  71. M.A. Morales, C. Pierleoni, D.M. Ceperley, Phys. Rev. E 81(2), 021202 (2010)

    Article  Google Scholar 

  72. M.A. Morales, C. Pierleoni, E. Schwegler, D.M. Ceperley, Proc. Natl. Acad. Sci. 107(29), 12799 (2010)

    Article  Google Scholar 

  73. E. Liberatore, M.A. Morales, D.M. Ceperley, C. Pierleoni, Mol. Phys. 109, 3029–3036 (2011)

    Article  Google Scholar 

  74. L. Caillabet, S. Mazevet, P. Loubeyre, Phys. Rev. B 83, 094101 (2011)

    Article  Google Scholar 

  75. M.A. Morales, J.M. McMahon, C. Pierleoni, D.M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013)

    Article  Google Scholar 

  76. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge/New York, 2004)

    Book  Google Scholar 

  77. B. Holst, M. French, R. Redmer, Phys. Rev. B 83, 235120 (2011)

    Article  Google Scholar 

  78. M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Astrophys. J. Suppl. Ser. 202(1), 5 (2012)

    Article  Google Scholar 

  79. F. Lin, M. Morales, K. Delaney, C. Pierleoni, R.M. Martin, D.M. Ceperley, Phys. Rev. Lett. 103, 256401 (2009)

    Article  Google Scholar 

  80. D.M. Ceperley, B. Bernu, J. Chem. Phys. 89, 6316 (1988)

    Article  Google Scholar 

  81. B. Bernu, D.M. Ceperley, W.A. Lester, J. Chem. Phys. 93, 552 (1990)

    Article  Google Scholar 

  82. S. Weir, A. Mitchell, W. Nellis, Phys. Rev. Lett. 76(11), 1860 (1996)

    Article  Google Scholar 

  83. B. Militzer, Phys. Rev. Lett. 97, 175501 (2006)

    Article  Google Scholar 

  84. B. Militzer, J. Low Temp. Phys. 139, 739 (2005)

    Article  Google Scholar 

  85. W. Lorenzen, B. Holst, R. Redmer, Phys. Rev. Lett. 102, 115701 (2009)

    Article  Google Scholar 

  86. B. Militzer, Phys. Rev. B 79, 155105 (2009)

    Article  Google Scholar 

  87. K.P. Driver, B. Militzer, Phys. Rev. Lett. 108, 115502 (2012)

    Article  Google Scholar 

  88. N.A. Romero, W.D. Mattson, Phys. Rev. B 76, 214113 (2007)

    Article  Google Scholar 

  89. M.D. Knudson, M.P. Desjarlais, D.H. Dolan, Science 322(5909), 1822 (2008)

    Article  Google Scholar 

  90. T.R. Mattsson, M.P. Desjarlais, Phys. Rev. Lett. 97, 017801 (2006)

    Article  Google Scholar 

  91. M. French, T.R. Mattsson, N. Nettelmann, R. Redmer, Phys. Rev. B 79, 054107 (2009)

    Article  Google Scholar 

  92. V. Karasiev, S. Trickey, Comput. Phys. Commun. 183(12), 2519 (2012)

    Article  MATH  Google Scholar 

  93. T. Sjostrom, F.E. Harris, S.B. Trickey, Phys. Rev. B 85, 045125 (2012)

    Article  Google Scholar 

  94. M. Troyer, U.J. Wiese, Phys. Rev. Lett. 94(17), 170201 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

DC is supported by DOE DE-NA0001789. EB is supported by DOE DE-AC52-07NA27344, LDRD 10-ERD-058 and the LLNL Lawrence Scholar program. CP is supported by the Italian Institute of Technology (IIT) under the SEED project grant number 259 SIMBEDD Advanced Computational Methods for Biophysics, Drug Design and Energy Research. This work was performed in part under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ceperley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brown, E., Morales, M.A., Pierleoni, C., Ceperley, D. (2014). Quantum Monte Carlo Techniques and Applications for Warm Dense Matter. In: Graziani, F., Desjarlais, M., Redmer, R., Trickey, S. (eds) Frontiers and Challenges in Warm Dense Matter. Lecture Notes in Computational Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-04912-0_5

Download citation

Publish with us

Policies and ethics