Skip to main content

Innovations in Finite-Temperature Density Functionals

  • Conference paper
  • First Online:
Frontiers and Challenges in Warm Dense Matter

Abstract

Reliable, tractable computational characterization of warm dense matter is a challenging task because of the wide range of important aggregation states and effective interactions involved. Contemporary best practice is to do ab initio molecular dynamics on the ion constituents with the forces from the electronic population provided by density functional calculations. Issues with that approach include the lack of reliable approximate density functionals and the computational bottleneck intrinsic to Kohn-Sham calculations. Our research is aimed at both problems, via the so-called orbital-free approach to density functional theory. After a sketch of the relevant properties of warm dense matter to motivate our research, we give a survey of our results for constraint-based non-interacting free energy functionals and exchange-correlation free-energy functionals. That survey includes comparisons with novel finite-temperature Hartree-Fock calculations and also presents progress on both pertinent exact results and matters of computational technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Gavroglu, Eur. J. Phys. 15, 9 (1994) and references therein

    Google Scholar 

  2. P.A. Bauer, E.K. Dabora, N. Manson, in Dynamics of Detonations and Explosions: Detonations, ed. by A.L. Kuhl, J.-C. Leyer, A.A. Borisov, W.A. Siriganano (American Institute of Aeronautics and Astronautics, Washington, DC, 1991), pp. 3ff and references therein

    Google Scholar 

  3. Basic Research Needs for High Energy Density Laboratory Physics (Report of the Workshop on Research Needs, Nov. 2009). U.S. Department of Energy, Office of Science and National Nuclear Security Administration (2010); see Chapter 6 and references therein

    Google Scholar 

  4. H.F. Wilson, B. Militzer, Phys. Rev. Lett. 108, 111101 (2012)

    Article  Google Scholar 

  5. R.P. Drake, Phys. Today 63, 28 (2010) and references therein

    Google Scholar 

  6. B.A. Remington, R.P. Drake, D.D. Ryutov, Rev. Mod. Phys. 78, 755 (2006) and references therein

    Google Scholar 

  7. R.P. Drake, High-Energy-Density Physics (Springer, Berlin, 2006) and references therein

    Google Scholar 

  8. J. Li, C.B. Agee, Nature 381, 686 (1996)

    Article  Google Scholar 

  9. M.J. Drake, K. Righter, Nature 416, 39 (2002)

    Article  Google Scholar 

  10. E. Jagoutz, H. Palme, H. Baddenhausen, K. Blum, M. Cendales, G. Dreibus, B. Spettel, V. Lorenz, H. Wanke, Proc. Lunar Planet. Sci. Conf. 10, 2031 (1979)

    Google Scholar 

  11. H. Wanke, Phil. Trans. Roy. Soc. Lond. A 303, 287 (1981)

    Article  Google Scholar 

  12. C.J. Allegre, J.-P. Poirer, E. Humler, A.W. Hofmann, Earth Planet. Sci. Lett. 134, 515 (1995)

    Article  Google Scholar 

  13. K. Righter, M.J. Drake, Earth Planet. Sci. Lett. 146, 541 (1997)

    Article  Google Scholar 

  14. J.C. Boettger, S.B. Trickey, Phys. Rev. B 51, R15623 (1995)

    Article  Google Scholar 

  15. J.C. Boettger, S.B. Trickey, Phys. Rev. B 53, 3007 (1996)

    Article  Google Scholar 

  16. R.N. Barnett, U. Landman, Phys. Rev. B 48, 2081 (1993)

    Article  Google Scholar 

  17. D. Marx, J. Hutter, Ab initio molecular dynamics: theory and implementation, in Modern Methods and Algorithms of Quantum Chemistry, ed. by J. Grotendorst, NIC Series, vol. 1 (John von Neumann Institute for Computing, J ulich, 2000), pp. 301ff and references therein

    Google Scholar 

  18. J.S. Tse, Annu. Rev. Phys. Chem. 53, 249 (2002)

    Article  Google Scholar 

  19. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, 2009) and references therein

    Google Scholar 

  20. T.D. Kühne, Ab-initio molecular dynamics arXiv:1201.5945 [physics.chem-ph]

    Google Scholar 

  21. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  22. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  Google Scholar 

  23. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)

    Article  Google Scholar 

  24. E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983)

    Article  Google Scholar 

  25. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989). For T-dependent theory see Sections 3.6 and 9.1

    Google Scholar 

  26. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  27. L.A. Collins (Los Alamos National Lab), Equilibrium and non-equilibrium orbital-free molecular dynamics simulations at extreme conditions, CECAM Workshop, Paris, 05 Sept 2012

    Google Scholar 

  28. D.O. Gericke (Univ. Warwick), Effective interactions and ion dynamics in warm dense matter, Invited Talk I8, Physics of Non-ideal Plasmas 14, Rostock Germany, 11 Sept 2012

    Google Scholar 

  29. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  MathSciNet  Google Scholar 

  30. A.K. Rajagopal, A density functional formalism for condensed matter systems, in Density Functional Methods in Physics, ed. by J. da Providencia, R.M. Dreizler, NATO ASI B, vol. 123 (Plenum, New York, 1985), pp. 159ff

    Google Scholar 

  31. M.V. Stoitsov, I.Zh. Petkov, Ann. Phys. 184, 121 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. R.M. Dreizler, Density functional theory at finite temperatures, in The Nuclear Equation of State, Part A, ed by W. Greiner, H. Stöcker, NATO ASI B, vol. 216 (Plenum, NY, 1989), pp. 521ff

    Google Scholar 

  33. J.P. Perdew, K. Schmidt, A.I.P. Conf. Proc. 577, 1 (2001)

    Google Scholar 

  34. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. A 30, 2619 (1984)

    Article  Google Scholar 

  35. N.D. Mermin, Ann. Phys. (NY) 21, 99 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Sokoloff, Ann. Phys. (NY) 45, 186 (1967)

    Article  Google Scholar 

  37. J. Dolbeault, P. Felmer, M. Lewin, Math. Model. Methods Appl. Sci. 19, 347 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Y.A. Wang, E.A. Carter, Orbital-free kinetic-energy density functional theory, Chap. 5 in Theoretical Methods in Condensed Phase Chemistry, ed. by S.D. Schwartz (Kluwer, New York, 2000), pp. 117ff and references therein

    Google Scholar 

  39. M. Hodak, W. Lu, J. Bernholc, J. Chem. Phys. 128, 014101 (2008)

    Article  Google Scholar 

  40. X. Blanc, E. Cances, J. Chem. Phys. 122, 214106 (2005)

    Article  Google Scholar 

  41. E.V. Ludeña, J. Chem. Phys. 79, 6174 (1983)

    Article  Google Scholar 

  42. R. Cuevas-Saavedra, D. Chakraborty, P.W. Ayers, Phys. Rev. A 85, 042519 (2012)

    Article  Google Scholar 

  43. T.A. Wesołowski, Phys. Rev. A 77, 012504 (2008) and references therein

    Google Scholar 

  44. J.W. Kaminski, S. Gusarov, T.A. Wesołowski, A. Kovalenko, J. Phys. Chem. A, 114, 6082 (2010) and references therein

    Google Scholar 

  45. V.V. Karasiev, S.B. Trickey, F.E. Harris, J. Comput. Aided Mat. Des. 13, 111 (2006)

    Article  Google Scholar 

  46. V.V. Karasiev, R.S. Jones, S.B. Trickey, F.E. Harris, Recent advances in developing orbital-free kinetic energy functionals, in New Developments in Quantum Chemistry, ed. by J.L. Paz, A.J. Hernández (Transworld Research Network, Kerala, 2009), pp. 25ff

    Google Scholar 

  47. V.V. Karasiev, R.S. Jones, S.B. Trickey, F.E. Harris, Phys. Rev. B 80, 245120 (2009)

    Article  Google Scholar 

  48. S.B. Trickey, V.V. Karasiev, R.S. Jones, Int. J. Quantum Chem. 109, 2943 (2009)

    Article  Google Scholar 

  49. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935)

    Article  MATH  Google Scholar 

  50. Y. Tal, R.F.W. Bader, Int. J. Quantum Chem. S12, 153 (1978)

    Google Scholar 

  51. L.J. Bartolotti, P.K. Acharya, J. Chem. Phys. 77, 4576 (1982)

    Article  Google Scholar 

  52. J.E. Harriman, The interface between reduced density matrices and density functional theory, in Density Matrices and Density Functionals, ed. by R. Erdahl, V.H. Smith Jr. (D. Reidel, Dordrecht, 1987), pp. 359ff

    Google Scholar 

  53. M. Levy, H. Ou-Yang, Phys. Rev. A 38, 625 (1988)

    Article  Google Scholar 

  54. R. Baltin, J. Chem. Phys. 86, 947 (1987)

    Article  Google Scholar 

  55. J.W. Dufty, S.B. Trickey, Phys. Rev. B 84, 125118 (2011)

    Article  Google Scholar 

  56. R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)

    Article  MATH  Google Scholar 

  57. J. Bartel, M. Brack, M. Durand, Nucl. Phys. A 445, 263 (1985)

    Article  Google Scholar 

  58. M. Brack, C. Guet, H.-B. Hakansson, Phys. Rep. 123, 275 (1985)

    Article  Google Scholar 

  59. F. Perrot, Phys. Rev. A 20, 586 (1979)

    Article  MathSciNet  Google Scholar 

  60. V.V. Karasiev, T. Sjostrom, S.B. Trickey, Phys. Rev. B 86, 115101 (2012)

    Article  Google Scholar 

  61. B. Holst, R. Redmer, M. Desjarlais, Phys. Rev. B 77, 184201 (2008)

    Article  Google Scholar 

  62. D.A. Horner, F. Lambert, J.D. Kress, L.A. Collins, Phys. Rev. B 80, 024305 (2009)

    Article  Google Scholar 

  63. W. Ebeling, W. Richert, W.D. Kraeft, W. Stolzmann, Phys. Stat. Solidi (b) 104, 193 (1981)

    Google Scholar 

  64. S. Tanaka, S. Mitake, S. Ichimaru, Phys. Rev. A 32, 1896 (1985)

    Article  Google Scholar 

  65. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. B 62 16536 (2000); Ibid. 67, 079901(E) (2003)

    Google Scholar 

  66. D.J.W. Geldart, E. Dunlap, M.L. Glasser, M.R.A. Shegelski, Solid State Commun. 88, 81 (1993)

    Article  Google Scholar 

  67. E. Dunlap, D.J.W. Geldart, Can. J. Phys. 72, 1 (1994)

    Article  Google Scholar 

  68. M.L. Glasser, D.J.W. Geldart, E. Dunlap, Can. J. Phys. 72, 7 (1994)

    Article  Google Scholar 

  69. E. Brown. D. Ceperley, J. Dubois, Simulation of the warm, dense homogeneous electron gas. Paper X24-2, American Physical Society, March meeting, 1 Mar 2012

    Google Scholar 

  70. V.V. Karasiev, T. Sjostrom, S.B. Trickey, Phys. Rev. E 86, 056704 (2012)

    Article  Google Scholar 

  71. T. Sjostrom, F.E. Harris, S.B. Trickey, Phys. Rev. B 85, 045125 (2012)

    Article  Google Scholar 

  72. T. Sjostrom, Finite-temperature hartree-fock exchange and exchange-correlation free energy functionals, IPAM Workshop IV, Computational Challenges in Warm Dense Matter, UCLA, Los Angeles, May 2012, https://www.ipam.ucla.edu/publications/plws4/plws410624.pdf and to be published

  73. F. Tran, T.A. Wesołowski, Int. J. Quantum Chem. 89, 441 (2002)

    Article  Google Scholar 

  74. V.V. Karasiev, D. Chakraborty, O.A. Shukruto, S.B. Trickey, Phys. Rev. B 88, 161108(R) (2013)

    Google Scholar 

  75. M. Levy, J.P. Perdew, Phys. Rev. A 32, 2010 (1985)

    Article  Google Scholar 

  76. M. Levy, The coordinate scaling requirements in density functional theory, in Single-Particle Density in Physics and Chemistry, ed. by N.H. March (Academic, London/San Diego, 1987), pp. 45ff

    Google Scholar 

  77. M. Levy, Phys. Rev. A 43, 4637 (1991)

    Article  Google Scholar 

  78. M. Levy, Coordinate scaling requirements for approximating exchange and correlation, in Density Functional Theory, ed. by E.K.U. Gross, R.M. Dreizler, NATO ASI B, vol. 337 (Plenum, New York, 1995), pp. 11ff

    Google Scholar 

  79. S. Pittalis, C.R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, E.K.U. Gross, Phys. Rev. Lett. 107, 163001 (2011)

    Article  Google Scholar 

  80. J.W. Dufty, S.B. Trickey, Finite temperature scaling in density functional theory (in preparation)

    Google Scholar 

  81. T. Gál, J.W. Dufty, S.B. Trickey, Local density approximation to the kinetic energy functional for finite N e , in preparation

    Google Scholar 

  82. J. Dufty, S. Dutta, Phys. Rev. E 87, 032101 (2013)

    Article  Google Scholar 

  83. J. Dufty, S. Dutta, Phys. Rev. E 87, 032102 (2013)

    Article  Google Scholar 

  84. L.W. Wang, M.P. Teter, Phys. Rev. B 45, 13196 (1992)

    Article  Google Scholar 

  85. B.J. Zhou, V.L. Ligneres, E.A. Carter, J. Chem. Phys. 122, 044103 (2005)

    Article  Google Scholar 

  86. C. Huang, E.A. Carter, Phys. Rev. B 81, 045206 (2010)

    Article  Google Scholar 

  87. J.W. Dufty, S.B. Trickey, Revised Thomas-Fermi functional for singular potentials, American Physical Society, March 2013 meeting abstract

    Google Scholar 

  88. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. B 62, 16536 (2000)

    Article  Google Scholar 

  89. J.W. Dufty, S. Dutta, Contrib. Plasma Phys. 52, 100 (2012)

    Article  Google Scholar 

  90. J.W. Dufty, Derivation and context of Kubo-Greenwood transport coefficients (in preparation)

    Google Scholar 

  91. S.B. Trickey, V.V. Karasiev, A. Vela, Phys. Rev. B 84, 075146 (2011)

    Article  Google Scholar 

  92. A. Vela, J.C. Pacheco-Kato, J.L. Gázquez, J.M. del Campo, S.B. Trickey, J. Chem. Phys. 136, 144115 (2012)

    Article  Google Scholar 

  93. J. Martín del Campo, J.L. Gázquez, R.J. Alvarez-Mendez, S.B. Trickey, A. Vela, Analysis of the generalized gradient approximation for the exchange energy, in Concepts and Methods in Modern Theoretical Chemistry, vol. 1, ed. by volume honoring Professor B.M. Deb, S.K. Ghosh and P.K. Chattaraj (Taylor and Francis/CRC, Boca Raton, 2012) in press

    Google Scholar 

  94. J.M. del Campo, J.L. Gázquez, S.B. Trickey, A. Vela, J. Chem. Phys. 136, 104108 (2012)

    Article  Google Scholar 

  95. J. Martín del Campo, A. Vela, J.L. Gázquez, S.B. Trickey, Chem. Phys. Lett. 543, 179 (2012)

    Article  Google Scholar 

  96. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  97. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, J.W. Sun, Phys. Rev. Lett. 103, 026403 (2009). Erratum, Ibid. 106, 179902 (2011)

    Google Scholar 

  98. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1984)

    Article  Google Scholar 

  99. V.V. Karasiev, S.B. Trickey, Comput. Phys. Commun. 183, 2519 (2012)

    Article  MATH  Google Scholar 

  100. G.K-L. Chan, A.J. Cohen, N.C. Handy, J. Chem. Phys. 114, 631 (2001)

    Google Scholar 

  101. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S.G̃oedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S.M̃azevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: first-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180, 2582 (2009)

    Google Scholar 

  102. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F.B̃runeval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, A brief introduction to the abinit software package, Zeit. Kristallogr. 220, 558 (2005)

    Google Scholar 

  103. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L.C̃hiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21, 395502 (2009)

    Google Scholar 

  104. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  105. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  Google Scholar 

  106. G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996)

    Article  Google Scholar 

  107. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  108. V. Heine, I. Abarenkov, Phil. Mag. 9, 451 (1964)

    Article  Google Scholar 

  109. L. Goodwin, R.J. Needs, V. Heine, J. Phys. Condens. Matter 2, 351 (1990)

    Article  Google Scholar 

  110. G.S. Ho, V.L. Lignères, E.A. Carter, Comput. Phys. Commun. 179, 839 (2008)

    Article  Google Scholar 

  111. L. Hung, C. Huang, I. Shin, G.S. Ho, V.L. Lignères, E.A. Carter, Comput. Phys. Commun. 181, 2208 (2010)

    Article  MATH  Google Scholar 

  112. V.V. Karasiev, T. Sjostrom, S.B. Trickey, Finite-temperature orbital-free DFT molecular dynamics: coupling Profess and Quantum Espresso (in preparation)

    Google Scholar 

  113. Ki-dong Oh, P.A. Deymier, Phys. Rev. B 58, 7577 (1998) and references therein

    Google Scholar 

  114. Ki-dong Oh, P.A. Deymier, Phys. Rev. B 59, 11276 (1999) and references therein

    Google Scholar 

  115. M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401 (2002)

    Article  Google Scholar 

  116. D.A. Liberman, This distinction was recognized in the different values of α in the Xα exchange functional of the late 1960s and early 1970s, Phys. Rev. 171, 1 (1968) as well as references in J.W.D. Connolly, in Semiempirical Methods of Electronic Structure Calculation, Part A: Techniques, ed. by G.A. Segal (Plenum, NY 1977), pp. 105ff

    Google Scholar 

  117. D.E. Taylor, V.V. Karasiev, K. Runge, S.B. Trickey, F.E. Harris, Computat. Mat. Sci. 39, 705 (2007)

    Article  Google Scholar 

  118. R. Colle, O. Salvetti, Theor. Chim. Acta 37, 329 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge, with thanks, many informative conversations with participants in the IPAM Long Program, including Kieron Burke, Jerome Daligault, Mike Desjarlais, Andreas Görling, Frank Graziani, Leslie Greengard, Hardy Gross, Stephanie Hansen, Walter Johnson, David Levermore, Winfried Lorenzen, Patrick Ludwig, Andreas Markmann, Michael Murillo, Aurora Pribram-Jones, Ronald Redmer, Luke Shulenberger, and Brian Wilson. We thank Russell Caflisch, Christian Ratsch, and Roland McFarland for the arrangements for those of us who visited IPAM. This work was supported under U.S. Dept. of Energy BES (TCMP, TMS) grant DE-SC 0002139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Trickey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Karasiev, V.V. et al. (2014). Innovations in Finite-Temperature Density Functionals. In: Graziani, F., Desjarlais, M., Redmer, R., Trickey, S. (eds) Frontiers and Challenges in Warm Dense Matter. Lecture Notes in Computational Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-04912-0_3

Download citation

Publish with us

Policies and ethics