Skip to main content

Determination, by Using GPR, of the Volumetric Water Content in Structures, Substructures, Foundations and Soil

  • Chapter
  • First Online:
Civil Engineering Applications of Ground Penetrating Radar

Abstract

Volumetric water content evaluation in structures, substructures, soils, and subsurface in general is a crucial issue in a wide range of applications. The main weaknesses of subsurface moisture sensing techniques are usually related both to the lack of cost-effectiveness of measurements, and to unsuitable support scales with respect to the extension of the surface to be investigated. In this regard, ground-penetrating radar (GPR) is an increasingly used non-destructive tool specifically suited for characterization and imaging. Several GPR techniques have been developed for different application purposes. Moisture evaluation in concrete is important for diagnosing structures at early stages of deterioration, as water contributes to the transfer of degrading and corrosive agents e.g., chloride. Traditionally, research efforts have been focused on the processing of GPR signal in time domain, although more recent studies are being increasingly addressed towards frequency domain analysis, providing additional information on moisture content in concrete. Concerning the evaluation of subsurface soil water content, different models ranging from empirical to theoretical are used for converting permittivity values into moisture. In this regard, two main GPR approaches are commonly employed for permittivity evaluation in time-domain measurements, namely, the ground wave method and the reflection method. Furthermore, the use of borehole transmission measurements, traditional off-ground methods, and of an inverse modelling approach allowing for a full waveform inversion of radar signals have been developed in the past decade. More recently, a self-consistent approach based on the Rayleigh scattering theory has also allowed the direct evaluation of moisture content from frequency spectra analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Qadi, I.L., Haddad, R.H., Riad, S.M.: Detection of chlorides in concrete using low radio frequencies. J. Mat. Civil Eng. 9(1), 29–34 (1997)

    Google Scholar 

  • Alumbaugh, D., Chang, P., Paprocki, L., Brainard, J., Glass, R.J., Rautman, C.A.: Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: a study of accuracy and repeatability. Water Resour. Res. 38, 1309 (2002)

    Google Scholar 

  • Annan, A.: GPR-history, trends, and future developments. Subsurf. Sens. Technol. Appl. 3, 253–270 (2002)

    Google Scholar 

  • ASTM C 876-91: Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. Ann. Book ASTM Stand. 04(02) (2009)

    Google Scholar 

  • Bekefi, G., Barrett, A.H.: Waves in dielectrics. Electromagnetic Vibrations Waves, and Radiation, pp. 426–440. MIT Press, Cambridge (1987)

    Google Scholar 

  • Benedetto, A., Pensa, S.: Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. J. Appl. Geophys. 62, 107–123 (2007)

    Google Scholar 

  • Benedetto, A.: Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain. J. Appl. Geophys. 71, 26–35 (2010)

    Google Scholar 

  • Benedetto, A., Benedetto, F., Tosti, F.: GPR applications for geotechnical stability of transportation infrastructures. Nondestr. Test. Eval. 27(3), 253–262 (2012)

    Google Scholar 

  • Benedetto, A., Tosti, F., Ortuani B., Giudici, M., Mele, M.: Soil moisture mapping using GPR for pavement applications. Paper presented at the 7th international workshop on advanced ground penetrating radar (IWAGPR), pp. 243–248. Nantes, 2–5 July 2013, doi:10.1109/IWAGPR.2013.6601550

  • Benedetto, F., Tosti, F.: GPR spectral analysis for clay content evaluation by the frequency shift method. J. Appl. Geophys. 1(97), 89–96 (2013)

    Google Scholar 

  • Berktold, A., Wollny, K.G., Alstetter, H.: Subsurface moisture determination with the ground wave of GPR. Paper presented at the 7th international conference on ground-penetrating radar, pp. 675–680. Lawrence, KS, May 1998

    Google Scholar 

  • Bevan, B.W.: The search for graves. Geophysics 56, 1310–1319 (1991)

    Google Scholar 

  • Birchak, J.R., Gardner, C.G., Hipp, J.E., Victor, J.M.: High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 62, 93–98 (1974)

    Google Scholar 

  • Bohren, C.F., Huffman, D.: Absorption and scattering of light by small particles. Wiley, New York (1983)

    Google Scholar 

  • Borhan, M.S., Parsons, L.R.: Monitoring of soil water content in a citrus grove using capacitance ECH2O probes. Paper no. 042110. Paper presented at the ASAE annual meeting, Ottowa, Canada, 1–4 August 2004

    Google Scholar 

  • Briggs, L.J.: Electrical instruments for determining the moisture, temperature, and soluble salt content of soils. USDA Div. Soils Bull. 10, pp. 52 (1899)

    Google Scholar 

  • Brovelli, A., Cassiani, G.: Effective permittivity of porous media: a critical analysis of the complex refractive index model. Geophys. Prospecting. 56, 715–727 (2008)

    Google Scholar 

  • Campbell, G.S., Calissendorff, C., Williams, J.H.: Probe for measuring soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J. 55, 291–293 (1991)

    Google Scholar 

  • Cassidy, N.J.: Electrical and magnetic properties of rocks, soils and fluids. In: Jol, H.M. (ed.) Ground Penetrating Radar: Theory and Applications, pp. 41–72. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Chen, Y., Or, D.: Geometrical factors and interfacial processes affecting complex dielectric permittivity of partially saturated porous media. Water Resour. Res. 42, W06423 (2006)

    Google Scholar 

  • Curtis, J.O.: Moisture effects on the dielectric properties of soils. IEEE Trans. Geosci. Remote Sens. 39, 125–128 (2001)

    Google Scholar 

  • Dalton, F.N., Herkelrath, W.N., Rawlins, D.S., Rhoades, J.D.: Time domain reflectometry: simultaneous measurement of soil-water content and electrical-conductivity with a single probe. Science 224, 989–990 (1984)

    Google Scholar 

  • Daniels, D.J.: Ground Penetrating Radar, 2nd edn. The Institunial Electrical Engineering, London (2004)

    Google Scholar 

  • Davis, J., Annan, A.P.: Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 37, 531–551 (1989)

    Google Scholar 

  • Davis, J.L., Annan, A.P.: Ground penetrating radar to measure soil water content. In: Dane, J.H., Topp, G.C. (eds.) Methods of Soil Analysis, Part 4, Soil Science Society of America (SSSA), pp. 446–463 (2002)

    Google Scholar 

  • Day-Lewis, F.D., Lane, J.W., Harris, J.M., Gorelick, S.M.: Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography. Water Resour. Res., 39(10) (2003). doi:10.1029/2002WR001722

  • Dérobert, X., Villain, G., Cortas, R., Chazelas, J.L.: EM characterization of hydraulic concretes in the GPR frequency band using a quadratic experimental design. Paper presented at the NDT conference on civil engineering, pp. 177–182. Nantes, France, 30 June–3 July 2009

    Google Scholar 

  • Di Matteo, A., Pettinelli, E., Slob, E.: Early-time GPR signal attributes to estimate soil dielectric permittivity: a theoretical study. IEEE T Geosci. Remote 51, 1643–1654 (2013)

    Google Scholar 

  • Dix, C.H.: Seismic velocities from surface measurements. Geophysics 20(1), 68–86 (1955)

    Google Scholar 

  • Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., El-Rayes, M.A.: Microwave dielectric behaviour of wet soil. Part II. Dielectric mixing models. IEEE Trans. Geosci. Remote 23, 35–46 (1985)

    Google Scholar 

  • Drude, P.: The Theory of Optics, pp. 268–396. Longmans, Green, and Co, New York (1902)

    Google Scholar 

  • Du, S.: Determination of water content in the subsurface with the ground wave of ground penetrating radar. Ph.D. thesis. Ludwig-Maximilians-Universitat, Munich, Germany (1996)

    Google Scholar 

  • Du, S., Rummel, P.: Reconnaissance studies of moisture in the subsurface with GPR. Paper presented at the 5th international conference on ground penetrating radar, pp. 1241–1248 (1994)

    Google Scholar 

  • Endres, A.L., Bertrand, E.A.: A pore-size scale model for the dielectric properties of water-saturated clean rocks and soils. Geophysics 71, F185–F193 (2006)

    Google Scholar 

  • Endres, A.L., Redman, J.D.: Modelling the electrical properties of porous rocks and soil containing immiscible contaminants. J. Environ. Eng. Geophys. 1, 105–112 (1996)

    Google Scholar 

  • Fellner-Feldegg, H.: Measurement of dielectrics in time domain. J. Phys. Chem. 73, 616–623 (1969)

    Google Scholar 

  • Fiori, A., Benedetto, A., Romanelli, M.: Application of the effective medium approximation for determining water contents through GPR in coarse-grained soil materials. Geophys. Res. Lett. 32, L09404 (2005)

    Google Scholar 

  • Garambois, S., Senechal, P., Perroud, H.: On the use of combined geophysical methods to assess water content and water conductivity of near-surface formations. J. Hydrol. 259, 32–48 (2002)

    Google Scholar 

  • Gaskin, G.J., Miller, J.D.: Measurement of soil water content using a simplified impedance measuring technique. J. Agric. Eng. Res. 63, 153–159 (1996)

    Google Scholar 

  • Ghose, R., Slob, E.C.: Quantitative integration of seismic and GPR reflections to derive unique estimates for water saturation and porosity in subsoil. Geophys. Res. Lett. 33(5) (2006). doi:10.1029/2005GL025376

  • Gorriti, A.G., Slob, E.C.: Comparison of the different reconstruction techniques of permittivity from S-parameters. IEEE Trans. Geosci. Remote 43, 2051–2057 (2005)

    Google Scholar 

  • Gowers, K.R., Millard, S.G.: Pulse mapping techniques for corrosion monitoring of reinforced concrete structures. In: Swamy, R.N. (ed.) Corrosion and Corrosion Protection of Steel in Concrete Sheffield Academic Press, pp. l 86–199 (1994)

    Google Scholar 

  • Greaves, R.J., Lesmes, D.P., Lee, J.M., Toksoz, M.N.: Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics 61, 683–695 (1996)

    Google Scholar 

  • Grote, K., Hubbard, S.S., Rubin, Y.: GPR monitoring of volumetric water content in soils applied to highway construction and maintenance. Lead. Edge 21, 482–485 (2002)

    Google Scholar 

  • Grote, K., Hubbard, S.S., Rubin, Y.: Field-scale estimation of volumetric water content using GPR ground wave techniques. Wat Resour. Res. 39(11) (2003)

    Google Scholar 

  • Heimovaara, T.J., Bouten, W., Verstraten, J.M.: Frequency domain analysis of time-domain reflectometry waveforms: 2. A four component complex dielectric mixing model for soils. Water Resour. Res. 30, 201–209 (1994)

    Google Scholar 

  • Ho, K.C., Gader, P.D., Wilson, J.N.: Improving landmine detection using frequency domain features from ground penetrating radar. Presented at the 2004 IEEE international geoscience and remote sensing symposium, IGARSS ’04, vol. 3, pp. 1617–1620 (2004)

    Google Scholar 

  • Hubbard, S., Rubin, Y., Majer, E.: Ground-penetrating-radar-assisted saturation and permeability estimation in bimodal systems. Water Resour. Res. 33, 971–990 (1997)

    Google Scholar 

  • Hubbard, S., Grote, K., Rubin, Y.: Estimation of nearsubsurface water content using high frequency GPR ground wave. Lead. Edge Explor. Soc. Explor. Geophys. 21(6), 552–559 (2002)

    Google Scholar 

  • Hugenschmidt, J., Loser, R.: Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 41, 785–792 (2008)

    Google Scholar 

  • Huisman, J., Hubbard, S., Redman, J., Annan, A.P.: Measuring soil water content with ground penetrating radar: a review. Vadose Zone J. 2, 476–491 (2003)

    Google Scholar 

  • Huisman, J.A., Snepvangers, J.J.J.C., Bouten, W., Heuvelink, G.B.M.: Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. J. Hydrol. 269, 194–207 (2002)

    Google Scholar 

  • Huisman, J.A., Sperl, C., Bouten, W., Verstraten, J.M.: Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar. J. Hydrol. 245(1–4), 48–58 (2001)

    Google Scholar 

  • Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14, 331–355 (1999)

    MATH  MathSciNet  Google Scholar 

  • Ihamouten, A., Villain, G., Dérobert, X.: Complex permittivity frequency variation from multioffset GPR data: hydraulic concrete characterization. IEEE Trans. Instrum. Measur. 61(6), 1636–1648 (2012)

    Google Scholar 

  • Jacobsen, O.H., Schjønning, P.: A laboratory calibration of time domain reflectometry for soil water measurements including effects of bulk density and texture. J. Hydrol. 151, 147–157 (1993)

    Google Scholar 

  • Jones, S.B., Friedman, S.P.: Particle shape effect on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resour. Res. 36, 2821–2833 (2000)

    Google Scholar 

  • Keller, G.V., Frischknecht, F.C.: Electrical methods in geophysical prospecting. Pergamon Press, New York (1966)

    Google Scholar 

  • Klysz, G., Balayssac, J.-P., Laurens, S.: Spectral analysis of radar surface waves for nondestructive evaluation of cover concrete. NDT E Int. 37(3), 221–227 (2004)

    Google Scholar 

  • Krause, M., Bämann, R., Frielinghaus, R., Fretzschmar, F., Kroggel, O., Langeberg, K., Maierhofer, C., Müller, W., Neisecke, J., Schickert M., Schmitz, V., Wiggenhauser, H., Wollbold, F.: Comparison of pulse-echo-methods for testing concrete. Presented at the international symposium non-destructive testing in civil engineering, pp. 281–295 (1995)

    Google Scholar 

  • Lambot, S., Javaux, M., Hupet, F., Vanclooster, M.: A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties. Water Resour. Res. 38(11), 1224 (2002). doi:http://dx.doi.org/10.1029/2001WR001224

  • Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Vanclooster, M.: Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 42, 2555–2568 (2004a)

    Google Scholar 

  • Lambot, S., Antoine, M., van den Bosch, I., Slob, E.C., Vanclooster, M.: Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties. Vadose Zone J. 3(4), 1072–1081 (2004b)

    Google Scholar 

  • Lambot, S., van den Bosch, I., Stockbroeckx, B., Druyts, P., Vanclooster, M., Slob, E.C.: Frequency dependence of the soil electromagnetic properties derived from ground-penetrating radar signal inversion. Subsurf. Sens. Technol. Appl. 6, 73–87 (2005)

    Google Scholar 

  • Lambot, S., Antoine, M., Vanclooster, M., Slob, E.C.: Effect of soil roughness on the inversion of off-ground monostatic GPR signal for noninvasive quantification of soil properties. Water Resour. Res. 42(3) (2006a). doi:10.1029/2005WR004416

  • Lambot, S., Weihermuller, L., Huisman, J.A., Vereecken, H., Vanclooster, M., Slob, E.C.: Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resour. Res. 42(11) (2006b). doi:10.1029/2006WR005097

  • Lambot, S., Slob, E.C., Vereecken, H.: Fast evaluation of zero-offset Green’s function for layered media with application to ground-penetrating radar. Geophys. Res. Lett. 34(L21405) (2007). doi:http://dx.doi.org/10.1029/2007GL031459

  • Lambot, S., Slob, E.C., Chavarro, D., Lubczynski, M., Vereecken, H.: Measuring soil surface moisture in irrigated areas of southern Tunisia using full waveform inversion of proximal GPR data. Near Surf. Geophys. 6(6), 403–410 (2008)

    Google Scholar 

  • Lambot, S., Rhebergen, J., Slob, E.C., Lopera, O., Jadoon, K.Z., Vereecken, H.: Remote estimation of the hydraulic properties of a sandy soil using full-waveform integrated hydrogeopohysical inversion of timelapse off-ground GPR data. Vadose Zone J. 8, 743–754 (2009)

    Google Scholar 

  • Laurens, S., Rhazi, J., Balayssac, J.-P., Arliguie, G.: Assessment of corrosion in reinforced concrete by ground penetrating radar and half-cell potential tests. Presented at the RILEM workshop on life prediction and aging management of concrete structures, Cannes, France (2000)

    Google Scholar 

  • Laurens, S., Balayssac, J.-P., Rhazi, J., Arliguie, G.: Influence of concrete moisture upon radar waveform. RILEM Mater. Struct. 35(248), 198–203 (2002)

    Google Scholar 

  • Laurens, S., Balayssac, J.-P., Rhazi, J., Klysz, G., Arliguie, G.: Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling. Mater. Struct. 38(283), 827–832 (2005)

    Google Scholar 

  • Lichtenecker, K., Rother, K.: Die herleitung des logarithmischen mischungsgesetzes aus allgemeinen prinzipien der stätionaren strömung. Phys. Z. 32, 255–260 (1931)

    Google Scholar 

  • Loeffler, O., Bano, M.: Ground penetrating radar measurements in a controlled vadose zone: influence of the water content. Vadose Zone J. 3(4), 1082–1092 (2004)

    Google Scholar 

  • Lopez, W., Gonzalez, J.A.: Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cem. Concr. Res. 23(2), 368–376 (1993)

    Google Scholar 

  • Lunt, I.A., Hubbard, S.S., Rubin, Y.: Soil moisture content estimation using ground penetrating radar reflection data. J. Hydrol. 307(1–4), 254–269 (2005)

    Google Scholar 

  • Malicki, M.A., Plagge, R., Roth, C.H.: Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci. 47, 357–366 (1996)

    Google Scholar 

  • Maser, K., Scullion, T.: Automated pavement subsurface profiling using radar: case studies of four experimental field sites. Transp. Res. Rec. 1344, 148–154 (1992)

    Google Scholar 

  • Michalski, K.A., Mosig, J.R.: Multilayered media Green’s functions in integral equation formulations. IEEE Trans. Antennas Propag. 45, 508–519 (1997)

    Google Scholar 

  • Mie, G.: Beiträge zur Optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377 (1908)

    Google Scholar 

  • Minet, J., Lambot, S., Slob, E.C., Vanclooster, M.: Soil surface water content estimation by full-waveform GPR signal inversion in presence of thin layers. IEEE Trans. Geosci. Remote Sens. 48(3), 1138–1150 (2010)

    Google Scholar 

  • Mínguez Maturana R.: Aplicación del geo-radar 3D multifrecuencia como herramienta de alto rendimiento para la detección de zonas de acumulación de humedad en obras lineales. Rutas Técnica, vol. 150, 6 pp (2012)

    Google Scholar 

  • Mitchell, T.M.: Radioactive/nuclear methods. In: CRC Handbook on Nondestructive Testing of Concrete. CRC Press, Florida, pp. 227–252 (1991)

    Google Scholar 

  • Montemor, M.F., Simoes, A.M.P., Ferreira, M.G.S.: Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem. Concr. Compos. 25, 491–502 (2003)

    Google Scholar 

  • Nadler, A., Dasberg, S., Lapid, I.: Time domain reflectometry measurements of water content and electrical conductivity of layered soil columns. Soil Sci. Soc. Am. J. 55, 938–943 (1991)

    Google Scholar 

  • Nakashima, Y., Zhou, H., Sato, M.: Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. J. Appl. Geophys. 47, 241–249 (2001)

    Google Scholar 

  • Narayana, P.A., Ophir, J.: On the frequency dependence of attenuation in normal and fatty liver. IEEE Trans. Sonics Ultrason. 30(6), 379–383 (1983)

    Google Scholar 

  • Neville, A.M.: Properties of Concrete, 4th edn, pp. 277–284. Longman, Essex (1995)

    Google Scholar 

  • Njoku, E.G., Entekhabi, D.: Passive microwave remote sensing of soil moisture. J. Hydrol. 184, 101–129 (1996)

    Google Scholar 

  • Norris, A.N., Callegari, A.J., Sheng, P.: A generalized differential effective medium theory. J. Mech. Phys. Solids 33, 525–543 (1985)

    MATH  Google Scholar 

  • Ohdaira, E., Masuzawa, N.: Water content and its effect on ultrasound propagation in concrete—the possibility of NDE. Ultrasonics 38(1–8), 546–552 (2000)

    Google Scholar 

  • Patriarca, C., Tosti, F., Velds, C., Benedetto, A., Lambot, S., Slob, E.C.: Frequency dependent electric properties of homogeneous multi-phase lossy media in the ground-penetrating radar frequency range. J. Appl. Geophys. 1(97), 81–88 (2013)

    Google Scholar 

  • Peterson, J.E.: Pre-inversion corrections and analysis of radar tomographic data. J. Environ. Eng. Geophys. 6, 1–18 (2001)

    Google Scholar 

  • Pettinelli, E., Vannaroni, G., Di Pasquo, B., Mattei, E., Di Matteo, A., De Santis, A., Annan, P.A.: Correlation between near-surface electromagnetic soil parameters and early-time GPR signals: An experimental study. Geophysics 72(2), A25–A28 (2007)

    Google Scholar 

  • Polder, R., Andrade, C., Elsener, B., Vennesland, O., Gulikers, J., Weidert, R., Raupach, M.: RILEM TC 154-EMC: electrochemical techniques for measuring metallic corrosion. Mater. Struct. 33, 603–611 (2000)

    Google Scholar 

  • Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford (1966)

    Google Scholar 

  • Redman, J.D., Davis, J.L., Galagedara, L.W., Parkin, G.W.: Field studies of GPR air launched surface reflectivity measurements of soil water content. In: Proceesings of SPIE. Presented at the 9th Conference On Ground-Penetrating Radar, vol. 4758, pp. 156–161 (2002)

    Google Scholar 

  • Robert, A.: Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J. Appl. Geophys. 40(1–3), 89–94 (1998)

    Google Scholar 

  • Roberts, R.L., Daniels, J.J.: Modeling near-field GPR in three dimensions using the FDTD method. Geophysics 62(4), 1114–1126 (1997)

    Google Scholar 

  • Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P.: A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2(4), 444–475 (2003)

    Google Scholar 

  • Rodeick, C.A.: Roadbed void detection by ground penetrating radar. Highw. Heavy Constr. 127, 60–61 (1984)

    Google Scholar 

  • Roels, S., Carmeliet, J.: Analysis of moisture flow in porous materials using microfocus X-ray radiography. Int. J. Heat Mass Transfer 49(25–26), 4762–4772 (2006)

    MATH  Google Scholar 

  • Roth, K., Schulin, R., Fluhler, H., Attinger, W.: Calibration of time domain reflectometry for water content measurement using composite dielectric approach. Water Resour. Res. 26, 2267–2273 (1990)

    Google Scholar 

  • Rucker, D.F., Ferré, P.A.: Near-surface water content estimation with borehole ground penetrating radar using critically refracted waves. Vadoze Zone J. 2, 247–252 (2003)

    Google Scholar 

  • Rucker, D.F., Ferré, T.P.A.: Correcting water content measurement errors associated with critically refracted fìrst arrivals on zero offset profìling borehole ground penetrating radar profìles. Vadose Zone J. 3(1), 278–287 (2004)

    Google Scholar 

  • Saleem, M., Shameem, M., Hussain, S.E., Maslehuddin, M.: Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Constr. Build. Mater. 10(3), 209–214 (1996)

    Google Scholar 

  • Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G.: Electrical resistivity survey in soil science: a review. Soil Tillage Res. 83, 173–193 (2005)

    Google Scholar 

  • Sbartaï, Z.M., Laurens, S., Balayssac, J.-P., Arliguie, G., Ballivy, G.: Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures. NDT E Int. 39(5), 400–407 (2006a)

    Google Scholar 

  • Sbartaï, Z.M., Laurens, S., Balayssac, J.-P., Ballivy, G., Arliguie, G.: Effect of concrete moisture on radar signal amplitude. ACI Mater. 419, 103–426 (2006b)

    Google Scholar 

  • Sbartaï, Z.M., Laurens, S., Rhazi, J., Balayssac, J.-P., Arliguie, G.: Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity. J. Appl. Geophys. 62, 361–374 (2007)

    Google Scholar 

  • Sbartaï, Z.M., Laurens, S., Breysse, D.: Concrete moisture assessment using radar NDT technique—comparison between time and frequency domain analysis. Presented at non-destructive testing in civil engineering (NDTCE ’09), Nantes, France, June 30–July 3, 2009

    Google Scholar 

  • Sen, P.N.: Grain shape eff ects on dielectric and electrical properties of rocks. Geophysics 49, 586–587 (1984)

    Google Scholar 

  • Serbin, G., Or, D.: Near-surface water content measurements using horn antenna radar: Methodology and overview. Vadose Zone J. 2, 500–510 (2003)

    Google Scholar 

  • Serbin, G., Or, D.: Ground-penetrating radar measurement of soil water content dynamics using a suspended horn antenna. IEEE Trans. Geosci. Remote Sens. 42(8), 1695–1705 (2004)

    Google Scholar 

  • Serbin, G., Or, D.: Ground-penetrating radar measurement of crop and surface water content dynamics. Remote Sens. Environ. 96(1), 119–134 (2005)

    Google Scholar 

  • Sheets, K.R., Hendrickx, J.M.H.: Noninvasive soil-water content measurement using electromagnetic induction. Water Resour. Res. 31, 2401–2409 (1995)

    Google Scholar 

  • Soutsos, M.N., Bungey, J.H., Miljard, S.G., Shaw, M.R., Patterson, A.: Dielectric properties of concrete and their influence on radar testing. NDT and E Int. 34(6), 419–425 (2001)

    Google Scholar 

  • Sperl, C.: Determination of spatial and temporal variation of the soil water content in an agro-ecosystem with ground-penetrating radar (In German). Ph.D. thesis. Technische Universitat Munchen, Munich, Germany (1999)

    Google Scholar 

  • Steelman, C.M., Endres, A.L.: Comparison of petrophysical relationships for soil moisture estimation using GPR ground waves. Vadose Zone J. 10, 270–285 (2011)

    Google Scholar 

  • Sybilski, D., Bańkowski, W., Sudyka, J., Krysiński, L.: Reasons of premature cracking pavement deterioration—a case study. RILEM 2012–2012, pp. 31–169

    Google Scholar 

  • Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M.M.: GRACE measurements of mass variability in the earth system. Science 305, 503–505 (2004)

    Google Scholar 

  • Tillard, S., Dubois, J.-C.: Analysis of GPR data: wave propagation velocity determination. J. Appl. Geophys. 33, 77–91 (1995)

    Google Scholar 

  • Topp, G., Davis, J.L., Annan, A.P.: Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 16, 574–582 (1980)

    Google Scholar 

  • Tosti, F., Patriarca, C., Slob, E.C., Benedetto, A., Lambot, S.: Clay content evaluation in soils through GPR signal processing. J. Appl. Geophys. 1(97), 69–80 (2013)

    Google Scholar 

  • Tosti, F., Benedetto, A., Calvi, A.: Efficient air-launched ground-penetrating radar inspections in a large-scale road network. Paper presented at the 3rd international conference on transportation infrastructure, pp. 703–709. Pisa, Italy, April 2014. doi:10.1201/b16730-103

  • Ulaby, F.T., Dubois, P.C., van Zyl, J.: Radar mapping of surface soil moisture. J. Hydrol. 184, 57–84 (1996)

    Google Scholar 

  • van Overmeeren, R.A., Sariowan, S.V., Gehrels, J.C.: Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two sites. J. Hydrol. 197, 316–338 (1997)

    Google Scholar 

  • Vaughan, C.J.: Ground penetrating radar surveys used in archaeological investigations. Geophysics 51, 595–604 (1986)

    Google Scholar 

  • Weihermuller, L., Huisman, J.A., Lambot, S., Herbst, M., Vereecken, H.: Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 340(3–4), 205–216 (2007)

    Google Scholar 

  • Wobschall, D.: Frequency-shift dielectric soil-moisture sensor. IEEE Trans. Geosci. Remote Sens. 16, 112–118 (1978)

    Google Scholar 

  • Yilmaz, O.: Seismic data processing. SEG Invest. Geophys. 62, 1758–1773 (1987)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Tosti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tosti, F., Slob, E. (2015). Determination, by Using GPR, of the Volumetric Water Content in Structures, Substructures, Foundations and Soil. In: Benedetto, A., Pajewski, L. (eds) Civil Engineering Applications of Ground Penetrating Radar. Springer Transactions in Civil and Environmental Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-04813-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04813-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04812-3

  • Online ISBN: 978-3-319-04813-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics