Skip to main content

Exergoeconomic Analysis of a Cascade Active Magnetic Regenerative Refrigeration System

  • Chapter
  • First Online:
Progress in Exergy, Energy, and the Environment

Abstract

In this paper, an exergoeconomic analysis of a cascade active magnetic regenerative (AMR) refrigeration system operating on a regenerative Brayton cycle is conducted with respect to various system design parameters. The finite difference method is used in order to solve the set of governing equations, which are highly nonlinear and coupled. In exergy analysis, a thermodynamic model is developed in order to determine exergy destruction rates and calculate the exergy efficiency of the system. In the economic analysis, investment cost rates are calculated with respect to equipment costs, which are determined by cost correlations for each system component, and capital recovery factors. Thus, by combining the two analyses, an exergoeconomic model is created whereby the exergy streams are identified and cost equations are allocated for each component. The results of both exergetic and exergoeconomic analyses show that increasing the fluid mass flow rate decreases the exergy efficiency, and increasing the specific exergetic cooling rate decreases the cost per unit of cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engelbrecht K, Bahl CRH (2010) Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance. J Appl Phys 108:123918

    Article  Google Scholar 

  2. Engelbrecht K, Nellis GF, Klein SA (2006) Predicting the performance of an active magnetic regenerator refrigerator used for space cooling and refrigeration. HVAC&R Res 12:1077–1095

    Article  Google Scholar 

  3. Engelbrecht KL, Nellis GF, Klein SA (2006) The effect of internal temperature gradients on regenerator matrix performance. J Heat Transfer 128(10):1060–1069

    Article  Google Scholar 

  4. Barclay JA, Steyert WA (1982) Active magnetic regenerator. US Patent No. 4,332,135

    Google Scholar 

  5. Barclay JA (1983) Wheel-type magnetic refrigerator. US Patent No. 4,408,463

    Google Scholar 

  6. Aprea C, Greco A, Maiorino A (2012) A dimensionless numerical analysis for the optimization of an active magnetic regenerative refrigerant cycle. Int J Energ Res 37:1475–1487

    Google Scholar 

  7. Tura A, Nielsen KK, Rowe A (2012) Experimental and modeling results of a parallel plate-based active magnetic regenerator. Int J Refrigeration 35(6):1518–1527

    Article  Google Scholar 

  8. Li P, Gong M, Yao G, Wu J (2006) A practical model for analysis of active magnetic regenerative refrigerators for room temperature applications. Int J Refrigeration 29:1259–1266

    Article  Google Scholar 

  9. Nellis GF, Klein SA (2006) Regenerative heat exchangers with significant entrained fluid heat capacity. Int J Heat Mass Transfer 49:329–340

    Article  MATH  Google Scholar 

  10. Rowe A (2011) Thermodynamics of active magnetic regenerators: part I. Cryogenics 52:111–118

    Article  MathSciNet  Google Scholar 

  11. Rowe A (2011) Thermodynamics of active magnetic regenerators: part II. Cryogenics 52:119–128

    Article  MathSciNet  Google Scholar 

  12. Aprea C, Greco A, Maiorino A (2012) Modelling an active magnetic refrigeration system: a comparison with different models of incompressible flow through a packed bed. Appl Thermal Eng 36:296–306

    Article  Google Scholar 

  13. Kitanovski A, Egolf PW (2009) Application of magnetic refrigeration and its assessment. J Magn Magn Mater 321:777–781

    Article  Google Scholar 

  14. Bjørk R, Smith A, Bahl CRH, Pryds N (2011) Determining the minimum mass and cost of a magnetic refrigerator. Int J Refrigeration 34:1805–1816

    Article  Google Scholar 

  15. Aprea C, Greco A, Maiorino A (2011) A numerical analysis of an active magnetic regenerative cascade system. Int J Energy Res 35:177–188

    Article  Google Scholar 

  16. Rohsenow WM, Hartnett JP, Ganic ENI (1985) Handbook of heat transfer, vol 6. McGraw-Hill, New York, pp 10–11

    Google Scholar 

  17. Kaviany M (1995) Principles of heat transfer in porous media. Springer, New York, 33, 46–47, 130, 228–229

    Book  MATH  Google Scholar 

  18. Rowe A (2011) Configuration and performance analysis of magnetic refrigerators. Int J Refrigeration 34:168–177

    Article  Google Scholar 

  19. Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. Wiley, New York

    MATH  Google Scholar 

  20. Dobrovicescu A, Tsatsaronis G, Stanciu D, Apostol V (2011) Consideration upon exergy destruction and exergoeconomic analysis of a refrigerating system. Revista de Chimie 62(12):1168–1174

    Google Scholar 

  21. Bjørk R, Engelbrecht K (2011) The influence of the magnetic field on the performance of an active magnetic regenerator (AMR). Int J Refrigeration 34:192–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ganjehsarabi .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

Ac :

Cross-sectional area, m 2

asf :

Specific surface area, m2/m3

c:

Specific heat capacity, J kg K−1

COP:

Coefficient of performance

D:

Diameter of the regenerator section, m

dP :

Diameter of the particles, μm

\( \dot{\mathrm{E}}\mathrm{x} \) :

Exergy flow rate (W)

h:

Convection coefficient (W m−2 K−1)

H:

Magnetic field, A m−1

Hmax :

Maximum magnetic field, A m−1

k:

Thermal conductivity, W m−1 K−1

L:

Length of the regenerator, m

m:

Mass, kg

\( \dot{\mathrm{m}} \) :

Mass flow rate, kg s−1

M:

Magnetic intensity, A m−1 

MCE:

Magnetocaloric effect

MCM:

Magnetocaloric material

Nu:

Nusselt number

Pr:

Prandtl number

\( \dot{Q} \) :

Heat transfer rate, W

Re:

Reynolds number

s:

Specific entropy (J kg−1 K−1)

t:

Time coordinate, s

T:

Temperature, K

t1 :

Magnetization time step (s)

t2 :

Isofield cooling time step (s)

t3 :

Demagnetization time step (s)

t4 :

Isofield heating time step (s)

V:

Volume, L

x:

Axial position, m

x :

Mass fraction

\( \dot{W} \) :

Work, kJ s−1

ΔP :

Pressure drop, Pa

ε :

Porosity of the regenerator bed

μ 0 :

Permeability of free space (m kg s−2 A−2)

ρ :

Density kg m−3

η :

Efficiency (-)

μ:

The specific exergy cooling of the system (W T−1 L−1)

ad:

Adiabatic

C:

Cold or refrigeration temperature

D:

Demagnetization

des:

Destruction

ex:

Exergy

f:

Fluid

H:

Hot or heat rejection temperature

I:

First stage of the cascade system

II:

Second stage of the cascade system

M:

Magnetization

P:

Pump

s:

Solid

t1 :

Magnetization process

t2 :

Isofield cooling process

t3 :

Demagnetization process

t4 :

Isofield heating process

wg:

Water–glycol mixture

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganjehsarabi, H., Dincer, I., Gungor, A. (2014). Exergoeconomic Analysis of a Cascade Active Magnetic Regenerative Refrigeration System. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Exergy, Energy, and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-04681-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04681-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04680-8

  • Online ISBN: 978-3-319-04681-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics