Skip to main content

Energy and Exergy Analyses of a Combined Multigeneration System

  • Chapter
  • First Online:
Progress in Exergy, Energy, and the Environment

Abstract

A renewable energy-based system is proposed in the present study which will produce electricity, hot water, space heating and cooling, fresh water, and hydrogen. Thermodynamic modeling including energy and exergy analyses is performed to evaluate the feasibility of the system under the proposed operating conditions, and parametric study is performed to assess the system performance for varying conditions. The performance of the baseline system results in energy and exergy efficiencies of 0.28 and 0.25, and for the multigeneration system, efficiency values of 0.69 and 0.54 are achieved. In an additional study using actual Canadian offshore wind speed data and ocean current conditions, the multigeneration efficiencies for the present system range between the values of 0.32–0.48 energetically and 0.22–0.35 exergetically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mousavi G (2012) An autonomous hybrid energy system of wind/tidal/microturbine/battery storage. Int J Electr Power Energy Syst 43(1):1144–1154

    Article  Google Scholar 

  2. Pilavachi PA (2002) Mini-and micro-gas turbines for combined heat and power. Appl Ther Eng 22(18):2003–2014

    Article  Google Scholar 

  3. Siva Reddy V, Kaushik SC, Tyagi SK (2012) Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant. Renew Energy 39(1):114–125

    Article  Google Scholar 

  4. Poullikkas A (2005) An overview of current and future sustainable gas turbine technologies. Renew Sustain Energy Rev 9(5):409–443

    Article  Google Scholar 

  5. Muis ZA, Hashim H, Manan ZA, Taha FM, Douglas PL (2010) Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target. Renew Energy 35(11):2562–2570

    Article  Google Scholar 

  6. Dincer I, Zamfirescu C (2012) Renewable‐energy‐based multigeneration systems. Int J Energy Res 36(15):1403–1415

    Article  Google Scholar 

  7. Rubio-Maya C, Uche-Marcuello J, Martínez-Gracia A, Bayod-Rújula AA (2011) Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources. Appl Energy 88(2):449–457

    Article  Google Scholar 

  8. Chicco G (2010) Sustainability challenges for future energy systems. J Sustain Energy 1(March):6–16

    Google Scholar 

  9. Natural Resources Canada (2010) Marine renewable energy – wave, tidal, and water current: Canadian Technology Status Report. CanmetENERGY, Ottawa. ISBN M154-40/2010E-PDF 978-1-100-17618-5

    Google Scholar 

  10. Dincer I, Rosen M (2007) Exergy, environment, and sustainable development. Elsevier, Oxford

    Google Scholar 

  11. Ben Elghali SE, Benbouzid MEH, Charpentier JF (2007) Marine tidal current electric power generation technology: state of the art and current status. In: Electric machines and drives conference, 2007. IEMDC’07. IEEE International, vol 2, pp 1407–1412

    Google Scholar 

  12. Levene JI, Mann MK, Margolis RM, Milbrandt A (2007) An analysis of hydrogen production from renewable electricity sources. Sol Energy 81(6):773–780

    Article  Google Scholar 

  13. Cengel YA, Boles MA (2006) Thermodynamics: an engineering approach. McGraw-Hill Higher Education

    Google Scholar 

  14. Kalantar M, Mousavi SM (2010) Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. Appl Energy 87(10):3051–3064

    Article  Google Scholar 

  15. Environment Canada (2008) Canadian wind energy atlas (web). windatlas.ca. 21 August 2008. http://www.windatlas.ca/en/maps.php. Accessed 5 Nov 2012

  16. NASA (2012) Ocean motion and surface currents: drift model (web). oceanmotion.org. N.D. http://oceanmotion.org/html/resources/drifter.htm. Accessed 12 Nov 2012

  17. Tarbotton M, Larson M (2006) Canada ocean energy atlas (phase 1) potential tidal current energy resources analysis background. Report to Canadian Hydraulics Centre, Ottawa, Ontario

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette Hogerwaard .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

A :

Area, m2

ACH :

Air changes per hour

c p :

Specific heat, kJ/kgċK

COP i :

Coefficient of performance (i = H for space heating, i = C for cooling)

CP :

Power coefficient

d :

Rotor diameter, m

ex:

Specific exergy, kJ/kg

\( \overset{.}{ Ex} \) :

Exergy rate, kW

h :

Specific enthalpy, kJ/kg

\( \dot{H} \) :

Enthalpy rate, kW

\( K\dot{E} \) :

Kinetic energy, kW

\( \dot{m} \) :

Mass flow rate, kg/s

p :

Pressure, kPa

P :

Power, kW

\( \dot{Q} \) :

Heat rate, kW

T :

Temperature, K

V :

Velocity, m/s; voltage, V

\( \dot{W} \) :

Shaft work rate, kW

α :

Mass fraction

η :

Energy efficiency

λ :

Tip-speed-ratio

ρ :

Density, kg/m3

ψ :

Exergy efficiency

ω :

Rotational speed, rad/s

a:

Air

C:

Compressor

CC:

Combustion chamber

C,C:

Cooling cycle compressor

C,H:

Heat pump compressor

Cond:

Condenser

d:

Destruction

des:

Desalination

el:

Electric

em:

Electromechanical

ev:

Evaporator

ex:

Exhaust

f:

Fuel

FW:

Fresh water

FWS:

Fresh water storage

GT:

Micro gas turbine

H2:

Hydrogen

HW:

Hot water

i{i = 1,2,3,…,n}:

State points (or inlet)

opt:

Optimal

OT:

Ocean tidal turbine

st:

Steam

SW:

Salt water

sw:

Fraction salt water

t:

Tidal

WT:

Wind turbine

W:

Wind

w:

Water

a:

Air

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hogerwaard, J., Dincer, I. (2014). Energy and Exergy Analyses of a Combined Multigeneration System. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Exergy, Energy, and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-04681-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04681-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04680-8

  • Online ISBN: 978-3-319-04681-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics